Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2011

Quizzes

Quiz \#1. Wednesday, 11 May, 2011. [10 minutes]

1. Compute $\lim _{x \rightarrow-3} \frac{x+3}{x^{2}-9}$ using the appropriate limit laws and algebra. [5]

Quiz \#2. Monday, 16 May, 2011. [10 minutes]
Do one of questions 1 or 2 .

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(3 x-2)=1$. [5]
2. Find the x - and y-intercepts and all the horizontal asymptotes of $f(x)=\frac{x^{2}}{x^{2}+1}$, and sketch its graph. [5]
Quiz \#3. Wednesday, 18 May, 2011. [10 minutes]
3. Use the limit definition of the derivative to compute $f^{\prime}(a)$ for $f(x)=\frac{1}{x}$. (You may assume that $a \neq 0$.) [5]
Quiz \#4. Wednesday, 25 May, 2011. [10 minutes]
4. Compute $f^{\prime}(x)$ for $f(x)=\ln \left(\frac{x}{1+x^{2}}\right)$. [5]

Quiz \#5. Monday, 30 May, 2011. [10 minutes]
Do one of questions 1 or 2 .

1. Find $\frac{d y}{d x}$ at the point $(2,2)$ on the curve defined by $x=\sqrt{x+y}$. [5]
2. Find $\frac{d y}{d x}$ at $x=e$ for $y=\ln (x \ln (x))$. [5]

Quiz \#6. Wednesday, 1 June, 2011. [15 minutes]

1. A $3 m$ long, very stretchy, bungee cord is suspended from a hook $4 m$ up on a wall. The other end of the cord is grabbed by a child who runs directly away from the wall at $2 \mathrm{~m} / \mathrm{s}$, holding the end of the cord 1 m off the ground, stretching the cord in the process. How is the length of the cord changing at the instant that the child's end of the cord is 4 m away from the wall? [5]

Quiz \#7. Monday, 6 June, 2011. [15 minutes]

1. Find any and all intercepts, intervals of increase and decrease, local maxima and minima, and vertical and horizontal asymptotes, of $y=x e^{-x}$, and sketch this curve based on the information you obtained. [5]
Bonus: Find any and all the points of inflection of this curve too. [1]
Hint: You may assume that $\lim _{x \rightarrow+\infty} x e^{-x}=0$. For $\lim _{x \rightarrow-\infty} x e^{-x}$ you're on your own.
Quiz \#8. Monday, 13 June, 2011. [10 minutes]
2. Compute $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$. [5]

Quiz \#9. Monday, 20 June, 2011. [10 minutes]
Do one of questions 1,2 , or 3 .

1. Compute $\int_{1}^{2}(x+1) d x$ using the Right-Hand Rule. [5]

Hint: You may assume that $1+2+3+\cdots+n=\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
2. Compute $\int_{-1}^{3}(x+1)^{2} d x$. [5]
3. Compute $\int \sin (x) \cos (x) d x$. [5]

Quiz \#10. Wednesday, 22 June, 2011. [10 minutes]

1. Find the area of the region between the curves $y=\cos (x)$ and $y=\sin (x)$, where $0 \leq x \leq \pi$. [5]
Hint: Recall that $\sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$.
Quiz \#11. Monday, 27 June, 2011. [10 minutes]
2. Sketch the solid obtained by rotating the region bounded by $y=\sqrt{x}$ and $y=0$, where $0 \leq x \leq 4$, about the x-axis and find its volume. [5]
Quiz \#12. Wednesday, 29 June, 2011. [10 minutes]
3. Sketch the solid obtained by rotating the region between $y=e^{x}$ and $y=1$, where $0 \leq x \leq 1$, about the y-axis and find its volume. [5]
Quiz \#13. Monday, 4 July, 2011. [10 minutes]
4. Compute $\int \sec ^{3}(x) \tan ^{3}(x) d x$. [5]

Quiz \#14. Monday, 11 July, 2011. [15 minutes]

1. Compute $\int \frac{1}{x^{4}+x^{2}} d x$. [5]

Quiz \#15. Wednesday, 13 July, 2011. [10 minutes]

1. Compute $\int_{1}^{\infty} \frac{1}{x^{2}} d x$. [5]

Quiz \#16. Monday, 18 July, 2011. [12 minutes]
Do one of questions 1 or 2 .

1. Find the arc-length of the curve $y=\frac{2}{3} x^{3 / 2}$, where $0 \leq x \leq 3$. [5]
2. Find the area of the surface of revolution obtained by rotating the curve $y=1-\frac{1}{2} x^{2}$, where $0 \leq x \leq \sqrt{3}$, about the y-axis. [5]
Quiz \#17. Wednesday, 19 July, 2011. [12 minutes]
Do one of questions 1 or 2 .
3. Sketch the curve $r=\theta, 0 \leq \theta \leq \pi$, in polar coordinates and the area of the region between the curve and the origin. [5]
4. For which values of x does the series $\sum_{n=0}^{\infty} x^{n+2}=x^{2}+x^{3}+x^{4}+\cdots$ converge? What is the sum when it does converge? [5]
Quiz \#18. Monday, 25 July, 2011. [12 minutes]
5. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+2^{n}}$ converges or diverges. [5]

Quiz \#19. Wednesday, 27 July, 2011. [12 minutes]
Do one of questions 1 or 2 .

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{(n+1)!}$ converges absolutely, converges conditionally, or diverges. [5]
2. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} e^{n}}{n}$ converges absolutely, converges conditionally, or diverges. [5]
