
Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2011

Solutions to the Quizzes

Quiz #1. Wednesday, 11 May, 2011. [10 minutes]

1. Compute lim
x→−3

x+ 3

x2 − 9
using the appropriate limit laws and algebra. [5]

Solution. Note that lim
x→−3

(x+3) = −3+3 = 0 and lim
x→−3

(x2−9) = (−3)2−9 = 9−9 = 0,

so we can’t use the limit law for quotients lest we divide by 0. We will resort to algebra
instead, using the fact that x2 − 9 = (x+ 3)(x− 3). Then

lim
x→−3

x+ 3

x2 − 9
= lim
x→−3

x+ 3

(x+ 3)(x− 3)
= lim
x→−3

1

x− 3

=
1

lim
x→−3

(x− 3)
=

1

−3− 3
=

1

−6
= −1

6
. �

Quiz #2. Monday, 16 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Use the ε-δ definition of limits to verify that lim
x→1

(3x− 2) = 1. [5]

Solution. We need to check that for any ε > 0 there is a δ > 0 such that if |x− 1| < δ,
then |(3x− 2)− 1| < ε. As usual, we will try to reverse-engineer the required δ. Suppose
ε > 0 is given. Then

|(3x− 2)− 1| < ε ⇐⇒ |3x− 3| < ε

⇐⇒ |3(x− 1)| < ε

⇐⇒ |x− 1| < ε

3
.

Since very step above is reversible, if |x− 1| < ε

3
, then |(3x− 2)− 1| < ε. Hence δ =

ε

3
wil do the job, and so, by the ε-δ definition of limits, lim

x→1
(3x− 2) = 1. �

2. Find the x- and y-intercepts and all the horizontal asymptotes of f(x) =
x2

x2 + 1
, and

sketch its graph. [5]

Solution. i. (Intercepts) Since f(0) =
02

02 + 1
=

0

1
= 0, the y-intercept is the point

(0, 0). f(x) =
x2

x2 + 1
= 0 is only possible when x = 0, so the point (0, 0) is also the only

x-intercept.

1



ii. (Horizontal asymptotes) We check the limits of f(x) as x→ ±∞:

lim
x→+∞

x2

x2 + 1
= lim
x→+∞

x2

x2 + 1
·

1
x2

1
x2

= lim
x→+∞

x2

x2

x2

x2 + 1
x2

= lim
x→+∞

1

1 + 1
x2

=
1

1 + 0
= 1

lim
x→−∞

x2

x2 + 1
= lim
x→−∞

x2

x2 + 1
·

1
x2

1
x2

= lim
x→−∞

x2

x2

x2

x2 + 1
x2

= lim
x→−∞

1

1 + 1
x2

=
1

1 + 0
= 1

(Note that 1
x2 → 0 as x→ ±∞.) It follows that f(x) has y = 1 as a horizontal asymptote

in both directions.

iii. (Graph) Note that since x2 < x2 + 1, 0 ≤ x2

x2 + 1
< 1. Together with the information

obtained above, this means that the graph of f(x) looks like:

I cheated a bit to draw this, of course; this graph was made by Maple with the
command:

> plot(x^2/(x^2+1), x=-5..5, y=-1..2);

The “>” is Maple’s prompt. �

Quiz #3. Wednesday, 18 May, 2011. [10 minutes]

1. Use the limit definition of the derivative to compute f ′(a) for f(x) =
1

x
. (You may

assume that a 6= 0.) [5]

Solution. By the limit definition of the derivative,

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
= lim
h→0

1
a+h −

1
a

h
= lim
h→0

1

h
· a− (a+ h)

(a+ h)a

= lim
h→0

1

h
· −h

(a+ h)a
= lim
h→0

−1

(a+ h)a
=

−1

(a+ 0)a
=
−1

a2
. �
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Quiz #4. Wednesday, 25 May, 2011. [10 minutes]

1. Compute f ′(x) for f(x) = ln

(
x

1 + x2

)
. [5]

Solution. Using the Chain Rule and Quotient Rule at the key steps, and simplifying as
much as can easily be done at the end:

f ′(x) =
d

dx

(
ln

(
x

1 + x2

))
=

1
x

1+x2

· d
dx

(
x

1 + x2

)
=

1 + x2

x
·
dx
dx ·

(
1 + x2

)
− x · ddx

(
1 + x2

)
(1 + x2)

2

=
1

x
·

1 ·
(
1 + x2

)
− x · (0 + 2x)

1 + x2

=
1

x
· 1 + x2 − 2x2

1 + x2

=
1

x
· 1− x2

1 + x2

=
1− x2

x (1 + x2)
�

Quiz #5. Monday, 30 May, 2011. [10 minutes]

Do one of questions 1 or 2.

1. Find
dy

dx
at the point (2, 2) on the curve defined by x =

√
x+ y. [5]

Solution i. We differentiate both sides of the equation defining the curve,

1 =
dx

dx
=

d

dx

√
x+ y =

1

2
√
x+ y

· d
dx

(x+ y) =
1

2
√
x+ y

·
(
dx

dx
+
dy

dx

)
=

1 + dy
dx

2
√
x+ y

,

and then solve for
dy

dx
,

1 + dy
dx

2
√
x+ y

= 1 =⇒ 1 +
dy

dx
= 2
√
x+ y =⇒ dy

dx
= 2
√
x+ y − 1 .

It follows that
dy

dx

∣∣∣∣
(x,y)=(2,2)

= 2
√

2 + 2− 1 = 2
√

4− 1 = 2 · 2− 1 = 4− 1 = 3. �

Solution ii. We solve for y first,

x =
√
x+ y =⇒ x2 = x+ y =⇒ y = x2 − x ,
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and then differentiate,
dy

dx
=

d

dx

(
x2 − x

)
= 2x − 1. It follows that

dy

dx

∣∣∣∣
(x,y)=(2,2)

=

2 · 2− 1 = 4− 1 = 3. �

2. Find
dy

dx
at x = e for y = ln (xln(x)). [5]

Solution i. We differentiate directly, using the Chain and Product Rules:

dy

dx
=

d

dx
ln (xln(x)) =

1

xln(x)
· d
dx

(xln(x)) =
1

xln(x)
·
([

dx

dx

]
· ln(x) + x ·

[
d

dx
ln(x)

])
=

1

xln(x)
·
(

1 · ln(x) + x · 1

x

)
=

ln(x) + 1

xln(x)

It follows that
dy

dx

∣∣∣∣
x=e

=
ln(e) + 1

eln(e)
=

1 + 1

e · 1
=

2

e
. �

Solution ii. We rewrite y using the properties of logarithms, y = ln (xln(x)) = ln(x) +
ln (ln(x)), and then differentiate, using the Sum and Chain Rules:

dy

dx
=

d

dx
(ln(x) + ln (ln(x))) =

1

x
+

1

ln(x)
· d
dx

ln(x) =
1

x
+

1

ln(x)
· 1

x
=

1

x

(
1 +

1

ln(x)

)

It follows that
dy

dx

∣∣∣∣
x=e

=
1

e

(
1 +

1

ln(e)

)
=

1

e

(
1 +

1

1

)
=

2

e
. �

Quiz #6. Wednesday, 1 June, 2011. [15 minutes]

1. A 3m long, very stretchy, bungee cord is suspended from a hook 4m up on a wall.
The other end of the cord is grabbed by a child who runs directly away from the wall
at 2m/s, holding the end of the cord 1m off the ground, stretching the cord in the
process. How is the length of the cord changing at the instant that the child’s end of
the cord is 4m away from the wall? [5]
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Solution. Call the distance the child is from the wall x and observe that the bungee cord
forms the hypotenuse of a right triangle with base x and height 4 − 1 = 3. (Recall that
the child holds the end of the cord 1m above the ground, while the top end of the cord is
attached to the wall 4m above the ground.) The fact that the child is running at 2m/s

amounts to saying that
dx

dt
= 2.

If we denote the length of the bungee cord by b, then we have x2 + 32 = b2 by the

Pythagorean theorem, and are trying to discover what
db

dt
is when x = 4.

We first differentiate both sides of the equation,

x2 + 32 = b2 =⇒ d

dt

(
x2 + 32

)
=

d

dt
b2 =⇒ 2x

dx

dt
+ 0 = 2b

db

dt
,

and solve for
db

dt
,

db

dt
=

2x

2b
· dx
dt

=
x

b
· dx
dt
.

We know that
dx

dt
= 2 and that x = 4 at the instant in question. It follows from

x2 + 32 = b2 that b =
√
x2 + 32, so b =

√
42 + 32 =

√
16 + 9 =

√
25 = 5 when x = 4.

Thus, when x = 4,
db

dt
=
x

b
· dx
dt

=
4

5
· 2 =

8

5
= 1.6m/s. �
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Quiz #7. Monday, 6 June, 2011. [15 minutes]

1. Find any and all intercepts, intervals of increase and decrease, local maxima and
minima, and vertical and horizontal asymptotes, of y = xe−x, and sketch this curve
based on the information you obtained. [5]

Bonus: Find any and all the points of inflection of this curve too. [1]

Hint: You may assume that lim
x→+∞

xe−x = 0. For lim
x→−∞

xe−x you’re on your own.

Solution. Here goes!

i. (Domain) The expression xe−x is defined for all x. Since it is a product of continuous
functions, it is continuous too. It follows, in particular, that there are no vertical
asymptotes.

ii. (Intercepts) For the y-intercept we plug in x = 0, then y = 0e−0 = 0 · 1 = 0. For the
x-intercept, note that since e−x > 0 for all x, xe−x = 0 exactly when x = 0. Thus the
origin, (0, 0) is both the y- and the only x-intercept.

iii. (Vertical asymptotes) None, for the reasons noted in i above.

iv. (Horizontal asymptotes) The hint tells us that we can assume that lim
x→+∞

xe−x = 0,

so curve has the horizontal asymptote y = 0 in the +ve direction. On the other hand,
since e−x → +∞ as x → −∞, lim

x→−∞
xe−x = −∞, there is no horizontal asymptote

in the −ve direction.

v. (Increase, decrease, maxima, & minima) First, we differentiate, using the Product and
Chain Rules:

dy

dx
=

d

dx

(
xe−x

)
=

(
d

dx
x

)
· e−x + x ·

(
d

dx
e−x

)
= 1 · e−x + x · e−x · d

dx
(−x)

= e−x + xe−x(−1) = (1− x)e−x

Since e−x > 0 for all x, it follows that:

dy

dx
= (1− x)e−x

>
=
<

0 ⇐⇒ (1− x)
>
=
<

0 ⇐⇒ x
<
=
>

1

Building the usual table:

x (−∞, 1) 1 (1,∞)
y ↑ max ↓
dy
dx + 0 −

In words: y = xe−x is increasing on (∞, 1), has a maximum at 1, and is decreasing
on (1,+∞). Note that since y = xe−x is defined and continuous everywhere, the
maximum is an absolute maximum. From our work looking horizontal asymptotes in
iv above, it is clear that there is no absolute minimum.
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vi. (Bonus – Points of inflection) We differentiate
dy

dx
, using the Product and Chain Rules,

to get d2y
dx2 :

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
(1− x)e−x

)
=

(
d

dx
(1− x)

)
· e−x + (1− x) ·

(
d

dx
e−x

)
= (−1) · e−x + (1− x) · e−x · d

dx
(−x)

= −e−x + (1− x)e−x(−1) = (x− 2)e−x

Since e−x > 0 for all x, it follows that:

d2y

dx2
= (x− 2)e−x

>
=
<

0 ⇐⇒ (x− 2)
>
=
<

0 ⇐⇒ x
>
=
<

2

Thus y = xe−x is concave down on (−∞, 2) and concave up on (2,+∞), so x = 2
gives the only point of inflection.

vii. (Graph) The following was drawn using Maple with the command

> plot(x*exp(-x),x=-2..5);

That’s all, folks! �
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Quiz #8. Monday, 13 June, 2011. [10 minutes]

1. Compute lim
x→∞

x2

ex
. [5]

Solution. Since x2 →∞ and ex →∞ as x→∞, we can apply l’Hôpital’s Rule.

lim
x→∞

x2

ex
= lim
x→∞

d
dxx

2

d
dxe

x
= lim
x→∞

2x

ex

At this point, note that 2x→∞ and ex →∞ as x→∞, so we can apply l’Hôpital’s Rule
again. Thus

lim
x→∞

x2

ex
= lim
x→∞

2x

ex
= lim
x→∞

d
dx (2x)
d
dxe

x
= lim
x→∞

2

ex
= 0,

since 2→ 2 and ex →∞ as x→∞. �

Quiz #9. Monday, 20 June, 2011. [10 minutes]

Do one of questions 1, 2, or 3.

1. Compute
∫ 2

1
(x+ 1) dx using the Right-Hand Rule. [5]

Hint: You may assume that 1 + 2 + 3 + · · ·+ n =
n∑
i=1

i = n(n+1)
2 .

Solution. We’ll throw the Right-Hand Rule formula,∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

b− a
n

f

(
a+ i

b− a
n

)
,

at this problem and hope we survive the algebra! Note that f(x) = x+ 1 in this case.∫ 2

1

(x+ 1) dx = lim
n→∞

n∑
i=1

2− 1

n
f

(
1 + i

2− 1

n

)
= lim
n→∞

n∑
i=1

1

n
f

(
1 +

i

n

)

= lim
n→∞

n∑
i=1

1

n

((
1 +

i

n

)
+ 1

)
= lim
n→∞

1

n

n∑
i=1

(
2 +

i

n

)

= lim
n→∞

1

n

[(
n∑
i=1

2

)
+

(
n∑
i=1

i

n

)]
= lim
n→∞

1

n

[
2n+

1

n

(
n∑
i=1

i

)]

= lim
n→∞

1

n

[
2n+

1

n
· n(n+ 1)

2

]
= lim
n→∞

1

n

[
2n+

n+ 1

2

]
= lim
n→∞

1

n

[
5

2
n+

1

2

]
= lim
n→∞

[
5

2
+

1

2n

]
=

5

2
+ 0 =

5

2
,

since 1
2n → 0 as n→∞. �
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2. Compute
∫ 3

−1(x+ 1)2 dx. [5]

Solution. We’ll expand (x+ 1)2 and then use the Power, Sum, and Constant Rules (all
at once!) to find the antiderivative and (implicitly!) apply the Fundamental Theorem of
Calculus to evaluate the definite integral.∫ 3

−1
(x+ 1)2 dx =

∫ 3

−1

(
x2 + 2x+ 1

)
dx =

(
x3

3
+ 2

x2

2
+ x

)∣∣∣∣3
−1

=

(
33

3
+ 32 + 3

)
−
(

(−1)3

3
+ (−1)2 + (−1)

)
= (9 + 9 + 3)−

(
−1

3
+ 1− 1

)
= 21−

(
−1

3

)
=

63

3
+

1

3
=

64

3

Note that because we were finding the antiderivative to evaluate an indefinite integral, we
did not worry about adding a generic constant of C to the antiderivative. (If we had, it
would have cancelled out when we evaluated the definite integral anyway.) �

3. Compute
∫

sin(x) cos(x) dx. [5]

Solution. This is a job for the Substitution and Power Rules. We will use the substitution

u = sin(x), so
du

dx
= sin(x) and du = sin(x) dx:

∫
sin(x) cos(x) dx =

∫
u du =

u2

2
+ C =

sin2(x)

2
+ C

Note that since we were computing an indefinite integral, we need to find the most general
possible antiderivative and so must add the generic constant C. �
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Quiz #10. Wednesday, 22 June, 2011. [10 minutes]

1. Find the area of the region between the curves y = cos(x) and y = sin(x), where
0 ≤ x ≤ π. [5]

Hint: Recall that sin
(
π
4

)
= cos

(
π
4

)
= 1√

2
.

Solution. From x = 0 to x = π, cos(x) starts at 1, decreases to 0 at x = π
2 , and decreases

some more to −1, while sin(x) starts at 0, increases to 1 at x = π
2 , and then decreases to

0. The two graphs cross once in the interval [0, π]: cos(x) = sin(x) at x = π
4 . (Hint!) It

follows that cos(x) ≥ sin(x) for 0 ≤ x ≤ π
4 , and sin(x) ≥ cos(x) for pi

4 ≤ x ≤ π.
It is a little easier to see all this if you can visualize or draw the graphs. Here is a

graph produced by Maple:

> plot([[t,cos(t),t=0..Pi],[t,sin(t),t=0..Pi]],x=0..Pi,y=-1..1);

We will break up the integral according to our analysis above:

Area =

∫ π/4

0

[cos(x)− sin(x)] dx+

∫ π

π/4

[sin(x)− cos(x)] dx

= [sin(x)− (− cos(x))]|π/40 + [(− cos(x))− sin(x)]|ππ/4
= [sin(x) + cos(x)]|π/40 + [− cos(x)− sin(x)]|ππ/4

=
[
sin
(π

4

)
+ cos

(π
4

)]
− [sin (0) + cos (0)]

+ [− cos (π)− sin (π)]−
[
− cos

(π
4

)
− sin

(π
4

)]
=

[
1√
2

+
1√
2

]
− [0 + 1] + [−(−1)− 0]−

[
− 1√

2
− 1√

2

]
=

2√
2
− 1 + 1−

[
− 2√

2

]
=

4√
2

= 2
√

2 �
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Quiz #11. Monday, 27 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region bounded by y =
√
x and y = 0, where

0 ≤ x ≤ 4, about the x-axis and find its volume. [5]

Solution. Here’s a sketch of the solid, with the original region shaded in:

We will use the washer method to find the volume of the solid. Since we are using
washers and rotated about a horizontal line, we will be integrating with respect to x, the
variable belonging to the horizontal axis. The cross section of the solid at x has outside
radius R = y =

√
x and inside radius r = 0 (so it is actually a disk). Plugging these into

the volume formula for the washer method gives:

Volume =

∫ 4

0

π
(
R2 − r2

)
dx = π

∫ 4

0

((√
x
)2 − 02

)
dx = π

∫ 4

0

(x− 0) dx

= π

∫ 4

0

x dx = π
x2

2

∣∣∣∣4
0

= π

(
42

2
− 02

2

)
= π

(
16

2
− 0

)
= 8π

Note that the limits for the integral, as always, come from the original region. �
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Quiz #12. Wednesday, 29 June, 2011. [10 minutes]

1. Sketch the solid obtained by rotating the region between y = ex and y = 1, where
0 ≤ x ≤ 1, about the y-axis and find its volume. [5]

Solution. Here’s a sketch of the solid, with the original region outlined in a bolder line
and with a typical cylindrical shell drawn in as well:

We will use the method of cylindrical shells to find the volume of the solid. Since we
are using shells and rotated about a vertical line (the y-axis, otherwise known as x = 0),
we will be integrating with respect to x, the variable belonging to the horizontal axis. The
cylindrical shell at x has radius r = x− 0 = x and height h = ex − 1. Plugging these into
the volume formula for the shell method gives:

Volume =

∫ 1

0

2πrh dx =

∫ 1

0

2πx (ex − 1) dx = 2π

∫ 1

0

(xex − x) dx

= 2π

∫ 1

0

xex dx− 2π

∫ 1

0

x dx Use integration by parts on the

first piece, with u = x and v′ = ex, so u′ = 1 and v = ex.

(Recall the integration by parts formula:

∫
uv′ dx = uv −

∫
u′v dx.)

= 2π

[
xex|10 −

∫ 1

0

1ex dx

]
− 2π

x2

2

∣∣∣∣1
0

= 2π
[
1ee − 0e0 − ex|10

]
− 2π

[
12

2
− 02

2

]
= 2π

[
e− 0−

(
e1 − e0

)]
− 2π

[
1

2
− 0

]
= 2π[e− e+ 1]− 2π

1

2
= 2π − π = π

Note that the limits for the integral, as always, come from the original region. �
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Quiz #13. Monday, 4 July, 2011. [10 minutes]

1. Compute

∫
sec3(x) tan3(x) dx. [5]

Solution. We’ll use a combination of the trig identity tan2(x) = sec2(x)− 1 and the fact

that
d

dx
sec(x) = sec(x) tan(x) to set up a suitable substitution:∫

sec3(x) tan3(x) dx =

∫
sec2(x) tan2(x) sec(x) tan(x) dx

=

∫
sec2(x)

(
sec2(x)− 1

)
sec(x) tan(x) dx

Substitute u = sec(x), so du = sec(x) tan(x) dx.

=

∫
u2
(
u2 − 1

)
du =

∫ (
u4 − u2

)
du

=
u5

5
− u3

5
+ C =

sec5(x)

5
− sec3(x)

5
+ C �

Quiz #14. Monday, 11 July, 2011. [15 minutes]

1. Compute

∫
1

x4 + x2
dx. [5]

Solution. Since the integrand is a rational function, we will compute the integral using
partial fractions. The first thing that we need to do is to factor the denominator. It is
easy to see that x4 + x2 =

(
x2 + 1

)
x2.

Since x2+1 is irreducible (as x2+1 ≥ 1 > 0 for all x, it has no roots) and x2 = (x−0)2

is a repeated linear factor, the partial fraction decomposition of the integrand will have
the form:

1

x4 + x2
=

1

(x2 + 1)x2
=
Ax+B

x2 + 1
+
C

x2
+
D

x

Next, we need to work out what the constants A, B, C, and D are. Combining the
right-hand side of the above equation over the common denominator of

(
x2 + 1

)
x2 and

collecting like terms in the numerator gives:

1

(x2 + 1)x2
=
Ax+B

x2 + 1
+
C

x2
+
D

x
=

(Ax+B)x2 + C
(
x2 + 1

)
+D

(
x2 + 1

)
x

(x2 + 1)x2

=
Ax3 +Bx2 + Cx2 + C +Dx3 +Dx

(x2 + 1)x2
=

(A+D)x3 + (B + C)x2 +Dx+ C

(x2 + 1)x2

Comparing numerators, we have 1 = (A+D)x3 + (B + C)x2 +Dx+ C, so we must have
A + D = 0, B + C = 0, D = 0, and C = 1. It follows that A + 0 = 0, so A = 0, and
B + 1 = 0, so B = −1. Thus the partial fraction decomposition of the given integrand is:

1

x4 + x2
=

0x+ (−1)

x2 + 1
+

1

x2
+

0

x
=
−1

x2 + 1
+

1

x2

13



Hence, using K for the generic constant to avoid confusing it with the C used above,∫
1

x4 + x2
dx =

∫ (
−1

x2 + 1
+

1

x2

)
dx =

∫
−1

x2 + 1
dx+

∫
1

x2
dx

= −
∫

1

x2 + 1
dx+

∫
x−2 dx = − arctan(x) + (−1)x−1 +K

= − arctan(x)− 1

x
+K . �

Quiz #15. Wednesday, 13 July, 2011. [10 minutes]

1. Compute

∫ ∞
1

1

x2
dx. [5]

Solution. This is an improper integral, so we need to take a limit:∫ ∞
1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞

∫ t

1

x−2 dx = lim
t→∞

−x−1
∣∣t
1

= lim
t→∞

− 1

x

∣∣∣∣t
1

= lim
t→∞

[
−1

t
−
(
−1

1

)]
= lim
t→∞

[
−1

t
+ 1

]
= −0 + 1 = 1

since 1
t → 0 as t→∞. �

Quiz #16. Monday, 18 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Find the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 3. [5]

Solution. First,
dy

dx
=

d

dx

2

3
x3/2 =

2

3
· 3

2
x1/2 = x1/2 =

√
x. Plugging this into the

arc-length formula gives:

arc-length =

∫ 3

0

√
1 +

(
dy

dx

)2

dx =

∫ 3

0

√
1 +

(√
x
)2
dx =

∫ 3

0

√
1 + x dx

Substitute u = x+ 1, so du = dx and
x 0 3
u 1 4

.

=

∫ 4

1

√
u du =

∫ 4

1

u1/2 du =
2

3
u3/2

∣∣∣∣4
1

=
2

3

(
43/2 − 13/2

)
=

2

3
(8− 1) =

14

3
�
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2. Find the area of the surface of revolution obtained by rotating the curve y = 1− 1

2
x2,

where 0 ≤ x ≤
√

3, about the y-axis. [5]

Solution. First,
dy

dx
=

d

dx

(
1− 1

2
x2
)

= 0 − 1

2
2x = −x. Second, since we are rotating

the curve about the y-axis, r = x− 0 = x. Plugging these into the formula for the area of
a surface of revolution gives:

area =

∫ √3

0

2πx

√
1 +

(
dy

dx

)2

dx =

∫ √3

0

2πx

√
1 + (−x)

2
dx = π

∫ √3

0

2x
√

1 + x2 dx

Substitute u = 1 + x2, so du = 2x dx and
x 0

√
3

u 1 4
.

= π

∫ 4

1

√
u du = π

∫ 4

1

u1/2 du = π
2

3
u3/2

∣∣∣∣4
1

=
2

3
π
(

43/2 − 13/2
)

=
2

3
π (8− 1) =

14

3
π �

Quiz #17. Wednesday, 19 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Sketch the curve r = θ, 0 ≤ θ ≤ π, in polar coordinates and the area of the region
between the curve and the origin. [5]

Solution. Cheating a bit, we use Maple to graph the curve:

> plots[polarplot](theta,theta=0..Pi);

To find the area of the region between curve and the origin, we plug the curve into
the area formula for polar regions:

A =

∫
C

1

2
r2dθ =

∫ π

0

1

2
θ2dθ =

1

2
· 1

3
θ3
∣∣∣∣π
0

=
1

6
π3 − 1

6
03 =

1

6
π3 �
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2. For which values of x does the series
∞∑
n=0

xn+2 = x2 + x3 + x4 + · · · converge? What

is the sum when it does converge? [5]

Solution.
∞∑
n=0

xn+2 = x2 + x3 + x4 + · · · is a geometric series with first term a = x2 and

common ratio r = x between successive terms. It follows that the series converges if either
a = x2 = 0, i.e. x = 0, or |r| = |x| < 0, i.e. −1 < x < 1. Since −1 < 0 < 1, this means
that the series converges exactly when −1 < x < 1.

When the series converges, it must converge to the value given by the formula for the

sum of a geometric series, namely,
a

1− r
=

x2

1− x
. �

Quiz #18. Monday, 25 July, 2011. [12 minutes]

1. Determine whether the series
∞∑
n=1

1

n2 + 2n
converges or diverges. [5]

Solution. We will use the (basic form of the) Comparison Test to show that the given
series converges. Since increasing a denominator makes the fraction smaller, we have both

1

n2 + 2n
<

1

n2
and

1

n2 + 2n
<

1

2n

for all n. (Note that all the terms above will always be positive for n ≥ 1.) Either
comparison will do the trick:

Comparison i. The series

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+ · · · converges by the Integral Test.

As f(x) =
1

x2
is a positive, decreasing, and continuous function for 1 ≤ x < ∞ such that

1

n2
= f(n), the series

∞∑
n=1

1

n2
converges if and only if the improper integral

∫ ∞
1

1

x2
dx

converges. Since∫ ∞
1

1

x2
dx = lim

t→∞

∫ t

1

1

x2
dx = lim

t→∞
− 1

x

∣∣∣∣t
1

= lim
t→∞

[(
−1

t

)
−
(
−1

1

)]
= (−0)− (−1) = 1

(note that 1
t → 0 as t→∞), it follows that the series

∞∑
n=1

1

n2
converges. In turn, it follows

by the Comparison Test that

∞∑
n=1

1

n2 + 2n
converges.

Comparison ii. The series
∞∑
n=1

1

2n
=

1

2
+

1

4
+

1

8
+

1

16
+· · · converges because it is a geometric

series with common ratio r =
1

2
and

∣∣∣∣12
∣∣∣∣ =

1

2
< 1. It follows by the Comparison Test that

∞∑
n=1

1

n2 + 2n
converges. �
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Quiz #19. Wednesday, 27 July, 2011. [12 minutes]

Do one of questions 1 or 2.

1. Determine whether the series
∞∑
n=1

(−2)n

(n+ 1)!
converges absolutely, converges condition-

ally, or diverges. [5]

Solution. We will use the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−2)n+1

((n+1)+1)!

(−2)n
(n+1)!

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (−2)n+1

(n+ 2)!
· (n+ 1)!

(−2)n

∣∣∣∣
= lim
n→∞

∣∣∣∣ −2

(n+ 2)

∣∣∣∣ = lim
n→∞

2

n+ 2
= 0 ,

since n+ 2→∞ as n→∞. 0 < 1, so it follows from the Ratio Test that the given series
converges absolutely. �

2. Determine whether the series
∞∑
n=1

(−1)nen

n
converges absolutely, converges condition-

ally, or diverges. [5]

Solution. We will try the Alternating Series Test, which requires checking that the series
is indeed alternating, that the terms are decreasing in absolute value, and that the limit
of the terms is 0.

First, we check if the series is indeed alternating. Since n > 0 and en > 0 for n ≥ 1,
the (−1)n forces the terms of the given series to alternate in sign. So far, so good.

Second, we check whether the terms decrease in absolute value. Is it the case that∣∣∣ (−1)n+1en+1

n+1

∣∣∣ = en+1

n+1 < en

n =
∣∣∣ (−1)nenn

∣∣∣ for all n (past some point)? Observe that

en+1

n+ 1
<
en

n
⇐⇒ nen+1 < (n+ 1)en ⇐⇒ ne < n+ 1 ⇐⇒ e < 1 +

1

n
,

which last is not true for any n ≥ 1 because e > 2 ≥ 1 + 1
n . It follows that the Alternating

Series Test cannot be used to conclude that the series converges. (Which, unfortunately,
is not the same as being able to conclude that the series diverges.) Nevertheless, it pays
to check the last condition required by the Alternating Series Test.

Third, we check whether the limit of the (absolute values of) the terms is 0:

lim
n→∞

∣∣∣∣ (−1)nen

n

∣∣∣∣ = lim
n→∞

en

n
= lim
x→∞

ex

x

→∞
→∞ as x→∞, so we use l’Hôpital’s Rule.

= lim
x→∞

d
dxe

x

d
dxx

= lim
x→∞

ex

1
=∞

Not only does this mean that the Alternating Series Test cannot be used to conclude that
the series converges, but that the series diverges. Failing this part of the Alternating Series
Test amounts to failing the Divergence Test, so it follows that the given series diverges. �
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