Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2011
 Final Examination

Time: 09:00-12:00, on Wednesday, 3 August, 2011.
Brought to you by Стефан.
Instructions: Show all your work and justify all your answers. If in doubt, ask!
Aids: Calculator; two (2) aid sheets; one (1) brain [may be caffeinated].
Part I. Do all three (3) of 1-3.

1. Compute $\frac{d y}{d x}$ as best you can in any three (3) of a-f. [15 $=3 \times 5$ each $]$
a. $x=e^{x+y}$
b. $y=\int_{0}^{-x} t e^{t} d t$
c. $y=x^{2} \ln (x)$
d. $y=\frac{x}{\cos (x)}$
e. $y=\sec ^{2}(\arctan (x))$
f. $y=\sin \left(e^{x}\right)$
2. Evaluate any three (3) of the integrals a-f. $\quad[15=3 \times 5$ each]
a. $\int \frac{2 x}{\sqrt{4-x^{2}}} d x$
b. $\int_{0}^{\pi / 2} \sin (z) \cos (z) d z$
c. $\int x^{2} \ln (x) d x$
d. $\int_{-\infty}^{\ln (3)} e^{s} d s$
e. $\int \frac{1}{\sqrt{1+x^{2}}} d x$
f. $\int_{1}^{2} \frac{1}{w^{2}+w} d w$
3. Do any five (5) of a-i. $\quad[25=5 \times 5$ ea.]
a. Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n} n^{2}}{3^{n}}$ converges absolutely, converges conditionally, or diverges.
b. Why must the arc-length of $y=\arctan (x), 0 \leq x \leq 13$, be less than $13+\frac{\pi}{2}$?
c. Find a power series equal to $f(x)=\frac{x}{1+x}$ (when the series converges) without using Taylor's formula.
d. Find the area of the region between the origin and the polar curve $r=\frac{\pi}{2}+\theta$, where $0 \leq \theta \leq \pi$.
e. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n}{2^{n}} x^{n}$.
f. Use the limit definition of the derivative to compute $f^{\prime}(0)$ for $f(x)=2 x-1$.
g. Compute the area of the surface obtained by rotating the the curve $y=\frac{x^{2}}{2}$, where $0 \leq x \leq \sqrt{3}$, about the y-axis.
h. Use the Right-hand Rule to compute the definite integral $\int_{0}^{3}(x+1) d x$.
i. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(x+1)=3$.

Part II. Do any three (3) of 4-8.
4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x)=\frac{x^{2}}{x^{2}+1}$, and sketch its graph. [15]
5. Do both of \mathbf{a} and \mathbf{b}.
a. Verify that $\int \sqrt{x^{2}-1} d x=\frac{1}{2} x \sqrt{x^{2}-1}-\frac{1}{2} \ln \left(x+\sqrt{x^{2}-1}\right)+C$. [7]
b. Find the arc-length of $y=\frac{1}{2} x \sqrt{x^{2}-1}-\frac{1}{2} \ln \left(x+\sqrt{x^{2}-1}\right)$ for $1 \leq x \leq 3$. [8]
6. Sketch the solid obtained by rotating the square with corners at $(1,0),(1,1),(2,0)$, and $(2,1)$ about the y-axis and find its volume and surface area. [15]
7. Do all three (3) of $\mathbf{a}-\mathbf{c}$.
a. Use Taylor's formula to find the Taylor series at 0 of $f(x)=\ln (x+1)$. [7]
b. Determine the radius and interval of convergence of this Taylor series. [4]
c. Use your answer to part a to find the Taylor series at 0 of $\frac{1}{x+1}$ without using Taylor's formula. [4]
8. A spherical balloon is being inflated at a rate of $1 \mathrm{~m}^{3} / \mathrm{s}$. How is its surface area changing at the instant that its volume is $36 \mathrm{~m}^{3}$? [15]
[Recall that a sphere of radius r has volume $\frac{4}{3} \pi r^{3}$ and surface area $4 \pi r^{2}$.]

$$
[\text { Total }=100]
$$

Part MMXI - Bonus problems.

13. Show that $\ln (\sec (x)-\tan (x))=-\ln (\sec (x)+\tan (x))$. [2]
14. Write an original poem touching on calculus or mathematics in general. [2]
