Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, Summer 2011 Final Examination

Time: 09:00-12:00, on Wednesday, 3 August, 2011.Brought to you by Стефан.Instructions: Show all your work and justify all your answers. If in doubt, ask!Aids: Calculator; two (2) aid sheets; one (1) brain [may be caffeinated].

Part I. Do *all* three (3) of 1-3.

1. Compute
$$\frac{dy}{dx}$$
 as best you can in any three (3) of **a**-**f**. $[15 = 3 \times 5 \text{ each}]$
a. $x = e^{x+y}$ **b.** $y = \int_0^{-x} te^t dt$ **c.** $y = x^2 \ln(x)$
d. $y = \frac{x}{\cos(x)}$ **e.** $y = \sec^2(\arctan(x))$ **f.** $y = \sin(e^x)$

2. Evaluate any three (3) of the integrals $\mathbf{a}-\mathbf{f}$. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int \frac{2x}{\sqrt{4-x^2}} dx$$
 b. $\int_0^{\pi/2} \sin(z) \cos(z) dz$ **c.** $\int x^2 \ln(x) dx$
d. $\int_{-\infty}^{\ln(3)} e^s ds$ **e.** $\int \frac{1}{\sqrt{1+x^2}} dx$ **f.** $\int_1^2 \frac{1}{w^2+w} dw$

3. Do any five (5) of a−i. [25 = 5 × 5 ea.]
a. Determine whether the series ∑[∞]_{n=2} (-1)ⁿn²/3ⁿ converges absolutely, converges conditionally, or diverges.

- **b.** Why must the arc-length of $y = \arctan(x), 0 \le x \le 13$, be less than $13 + \frac{\pi}{2}$?
- c. Find a power series equal to $f(x) = \frac{x}{1+x}$ (when the series converges) without using Taylor's formula.
- **d.** Find the area of the region between the origin and the polar curve $r = \frac{\pi}{2} + \theta$, where $0 \le \theta \le \pi$.
- e. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n}{2^n} x^n$.
- **f.** Use the limit definition of the derivative to compute f'(0) for f(x) = 2x 1.
- **g.** Compute the area of the surface obtained by rotating the the curve $y = \frac{x^2}{2}$, where $0 \le x \le \sqrt{3}$, about the *y*-axis.
- **h.** Use the Right-hand Rule to compute the definite integral $\int_{a}^{b} (x+1) dx$.
- i. Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 2} (x+1) = 3$.

Part II. Do any three (3) of 4-8.

- 4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x) = \frac{x^2}{x^2 + 1}$, and sketch its graph. [15]
- 5. Do both of a and b.

a. Verify that
$$\int \sqrt{x^2 - 1} \, dx = \frac{1}{2}x\sqrt{x^2 - 1} - \frac{1}{2}\ln\left(x + \sqrt{x^2 - 1}\right) + C.$$
 [7]

- **b.** Find the arc-length of $y = \frac{1}{2}x\sqrt{x^2 1} \frac{1}{2}\ln(x + \sqrt{x^2 1})$ for $1 \le x \le 3$. [8]
- 6. Sketch the solid obtained by rotating the square with corners at (1,0), (1,1), (2,0), and (2,1) about the *y*-axis and find its volume and surface area. [15]
- 7. Do all three (3) of $\mathbf{a}-\mathbf{c}$.
 - **a.** Use Taylor's formula to find the Taylor series at 0 of $f(x) = \ln(x+1)$. [7]
 - **b.** Determine the radius and interval of convergence of this Taylor series. [4]
 - **c.** Use your answer to part **a** to find the Taylor series at 0 of $\frac{1}{x+1}$ without using Taylor's formula. [4]

8. A spherical balloon is being inflated at a rate of $1 m^3/s$. How is its surface area changing at the instant that its volume is $36 m^3$? [15]

[Recall that a sphere of radius r has volume $\frac{4}{3}\pi r^3$ and surface area $4\pi r^2$.]

[Total = 100]

Part MMXI - Bonus problems.

- **13.** Show that $\ln(\sec(x) \tan(x)) = -\ln(\sec(x) + \tan(x))$. [2]
- 41. Write an original poem touching on calculus or mathematics in general. [2]

I HOPE THAT YOU HAD SOME FUN WITH THIS! GET SOME REST NOW ...