Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2011

Assignment \#8

Smile!?
Due on Monday, 27 June, 2011.
The ellipse with equation $9 x^{2}+4 y^{2}=36$ (in standard form $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$) has its x-intercepts at $x= \pm 2$. The parabola $y=a\left(x^{2}-4\right)=a x^{2}-4 a$, where we require that $a>0$, also has its x-intercepts at $x= \pm 2$.

1. Find the value of a so that the area of the part of the ellipse $9 x^{2}+4 y^{2}=36$ below the parabola $y=a\left(x^{2}-4\right)$ is exactly 2π. [10]
Hint: This is doable by hand - though you may have to read ahead to learn about trigonometric substitutions to do the relevant integral - but it would be a lot less work to use Maple...

Note: Not that you need to know it for this problem, but the area enclosed by the ellipse with equation $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1$ is $\pi c d$. In this case $c=2$ and $d=3$, which makes the area of the whole ellipse 6π, so the question asks you to find the value of a which makes the area of the region $\frac{1}{3}$ the area of the whole ellipse.

