Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2011

 Assignment \#7

 Assignment \#7

 An integral inequality

 An integral inequality
 Due on Monday, 27 June, 2011.

Up side: No Maple; it won't help. Down side: It's a proof. (Well, a generic calculation or two, anyway.)

1. Suppose that $f(x)$ and $g(x)$ are continuous functions which are not always equal to 0 on some interval $[a, b]$. Show that

$$
\left(\int_{a}^{b} f(x) g(x) d x\right)^{2} \leq\left(\int_{a}^{b} f^{2}(x) d x\right)\left(\int_{a}^{b} g^{2}(x) d x\right)
$$

Note: To do this you will probably want to review some of the basic properties of definite integrals, especially the order properties, given in Chapter 5 of the textbook.

Hint: Consider the case where there is some constant c such that $f(x)=c g(x)$ for all x in $[a, b]$ separately from the case where there is no such constant.

Bonus: A two-player game (in which the players take turns making moves) is considered to be finite if it cannot go on forever when played by the rules. The two-player game SUPERGAME is played as follows: the first player chooses a finite two-player game, which the two players proceed to play out with the second player going first. Is supergame itself a finite two-player game? Why or why not? [1]

Problems

Problems worthy of attack prove their worth by hitting back.

Piet Hein

