Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2010

Solutions to Test 2

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 $=4 \times 4$ each]
a. $\int \frac{1}{4-x^{2}} d x$
b. $\int \tan (x) d x$
c. $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
d. $\int \frac{x^{3}+x+1}{x^{2}+1} d x$
e. $\int_{-\pi / 4}^{\pi / 4} \sec ^{2}(x) d x$
f. $\int x \ln (x) d x$

Solution i to a. (Partial fractions.) Since $\frac{1}{4-x^{2}}=\frac{1}{(2-x)(2+x)}=\frac{A}{2-x}+\frac{B}{2+x}$, we have $1=A(2+x)+B(2-x)=(A-B) x+(2 A+2 B)$. This boils down to solving the linear equations $A-B=0$, i.e. $A=B$, and $2 A+2 B=1$, i.e. $A+B=\frac{1}{2}$. Plugging the first into the second gives $2 A=\frac{1}{2}$; it follows that $B=A=\frac{1}{4}$. Now

$$
\begin{aligned}
\int \frac{1}{4-x^{2}} d x= & \frac{1}{4} \int \frac{1}{2-x} d x+\frac{1}{4} \int \frac{1}{2+x} d x \\
& \text { Substitute } u=2-x, \text { so } d u=-d x \text { and } d x=(-1) d u, \text { in the } \\
& \text { first integral, and } w=2+x, \text { so } d w=d x, \text { in the second. } \\
= & \frac{1}{4} \int \frac{-1}{u} d u+\frac{1}{4} \int \frac{1}{w} d w=-\frac{1}{4} \ln (u)+\frac{1}{4} \ln (w)+C \\
= & -\frac{1}{4} \ln (2-x)+\frac{1}{4} \ln (2+x)+C .
\end{aligned}
$$

Solution il to a. (Trig substitution.) We'll use the trigonometric substitution $x=$ $2 \sin (\theta)$, so $d x=2 \cos (\theta) d \theta$. Note that it follows that $\sin (\theta)=\frac{x}{2}$ and $\cos (\theta)=\sqrt{1-\frac{x^{2}}{4}}$. Now

$$
\begin{aligned}
\int \frac{1}{4-x^{2}} d x & =\int \frac{2 \cos (\theta)}{4-4 \sin ^{2}(\theta)} d \theta=\int \frac{2 \cos (\theta)}{4 \cos ^{2}(\theta)} d \theta=\int \frac{1}{2 \cos (\theta)} d \theta=\frac{1}{2} \int \sec (\theta) d \theta \\
& =\frac{1}{2} \ln (\sec (\theta)+\tan (\theta))+C=\frac{1}{2} \ln \left(\frac{1}{\cos (\theta)}+\frac{\sin (\theta)}{\cos (\theta)}\right)+C \\
& =\frac{1}{2} \ln \left(\frac{1}{\sqrt{1-\frac{x^{2}}{4}}}+\frac{\frac{x}{2}}{\sqrt{1-\frac{x^{2}}{4}}}\right)+C=\frac{1}{2} \ln \left(\frac{1+\frac{x}{2}}{\sqrt{1-\frac{x^{2}}{4}}}\right)+C .
\end{aligned}
$$

Exercise: Show that solutions I and II to a actually give the same answer.
Solution to \mathbf{b}. We'll use the definition of $\tan (x)$:

$$
\begin{aligned}
\int \tan (x) d x & =\int \frac{\sin (x)}{\cos (x)} d x \quad \begin{array}{l}
\text { Substitute } u=\cos (x), \text { so } d u=-\sin (x) d x \\
\text { and }(-1) d u=\sin (x) d x .
\end{array} \\
& =\int \frac{-1}{u} d u=-\ln (u)+C=-\ln (\cos (x))+C=\ln \left(\frac{1}{\cos (x)}\right)+C \\
& =\ln (\sec (x))+C
\end{aligned}
$$

Solution to c. We'll use the Power Rule:

$$
\int_{0}^{1} \frac{1}{\sqrt{x}} d x=\int_{0}^{1} x^{-1 / 2} d x=\left.\frac{x^{1 / 2}}{1 / 2}\right|_{0} ^{1}=\left.2 \sqrt{x}\right|_{0} ^{1}=2 \sqrt{1}-2 \sqrt{0}=2
$$

Exercise: Explain why the method used in \mathbf{c} is not quite correct, even though it gives the right answer.
Solution to d. Note that $\frac{x^{3}+x+1}{x^{2}+1}$ is a rational function in which the degree of the denominator is less that the degree of the numerator. Since $x^{3}+x+1=x\left(x^{2}+1\right)+1$ (you can do long division to get this, or just use the "eyeball theorem"), it follows that

$$
\frac{x^{3}+x+1}{x^{2}+1}=\frac{x\left(x^{2}+1\right)+1}{x^{2}+1}=x+\frac{1}{x^{2}+1} .
$$

Hence

$$
\begin{aligned}
\int \frac{x^{3}+x+1}{x^{2}+1} d x & =\int\left(x+\frac{1}{x^{2}+1}\right) d x=\int x d x+\int \frac{1}{x^{2}+1} d x \\
& =\frac{1}{2} x^{2}+\arctan (x)+C
\end{aligned}
$$

Those who haven't yet memorized that the antiderivative of $\frac{1}{x^{2}+1}$ is $\arctan (x)$ can get it with the trig substitution $x=\tan (\theta)$.

Solution to e.

$$
\int_{-\pi / 4}^{\pi / 4} \sec ^{2}(x) d x=\left.\tan (x)\right|_{-\pi / 4} ^{\pi / 4}=\tan (\pi / 4)-\tan (-\pi / 4)=1-(-1)=2
$$

since $\sin (\pi / 4)=\cos (\pi / 4)=\cos (-\pi / 4)=\frac{1}{\sqrt{2}}$ and $\sin (-\pi / 4)=-\frac{1}{\sqrt{2}}$.

Solution to \mathbf{f}. We'll do this one using integration by parts; let $u=\ln (x)$ and $v^{\prime}=x$, so $u^{\prime}=\frac{1}{x}$ and $v=\frac{1}{2} x^{2}$.

$$
\begin{aligned}
\int x \ln (x) d x & =\ln (x) \cdot \frac{1}{2} x^{2}-\int \frac{1}{x} \cdot \frac{1}{2} x^{2} d x=\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \int x d x \\
& =\frac{1}{2} x^{2} \ln (x)-\frac{1}{2} \cdot \frac{1}{2} x^{2}+C=\frac{1}{2} x^{2} \ln (x)-\frac{1}{4} x^{2}+C
\end{aligned}
$$

2. Do any two (2) of parts a-e. $[12=2 \times 6$ each $]$

$$
\text { a. Compute } \int_{0}^{2}(x+1) d x \text { using the Right-hand Rule. }
$$

Solution. We plug into the formula and chug away:

$$
\begin{aligned}
\int_{0}^{2}(x+1) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2-0}{n} \cdot\left[\left(0+i \frac{2-0}{n}\right)+1\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2}{n} \cdot\left(i \frac{2}{n}+1\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=1}^{n}\left(i \frac{2}{n}+1\right)=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\left[\sum_{i=1}^{n} i \frac{2}{n}\right]+\left[\sum_{i=1}^{n} 1\right]\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\left[\frac{2}{n} \sum_{i=1}^{n} i\right]+n\right)=\lim _{n \rightarrow \infty} \frac{2}{n}\left(\frac{2}{n} \cdot \frac{n(n+1)}{2}+n\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}((n+1)+n)=\lim _{n \rightarrow \infty} \frac{2}{n}(2 n+1) \\
& =\lim _{n \rightarrow \infty}\left(4+\frac{2}{n}\right)=4+0=4,
\end{aligned}
$$

since $\frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty$.
b. Find the area of the region bounded by $y=2+x$ and $y=x^{2}$ for $-1 \leq x \leq 1$.

Solution. A little experimentation with values at different points or a very quick sketch suffices to show that the two curves touch at $x=-1$ and that $2+x>x^{2}$ until somewhere to the right of $x=1$. Thus the area between the two curves for $-1 \leq x \leq 1$ is:

$$
\begin{aligned}
\int_{-1}^{1}\left(2+x-x^{2}\right) d x & =\left.\left(2 x+\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)\right|_{-1} ^{1} \\
& =\left(2 \cdot 1+\frac{1^{2}}{2}-\frac{1^{3}}{3}\right)-\left(2 \cdot(-1)+\frac{(-1)^{2}}{2}-\frac{(-1)^{3}}{3}\right) \\
& =\left(2+\frac{1}{2}-\frac{1}{3}\right)-\left(-2+\frac{1}{2}+\frac{1}{3}\right) \\
& =\frac{13}{6}-\frac{-5}{6}=\frac{18}{6}=3
\end{aligned}
$$

c. Without actually computing $\int_{0}^{10 / \pi} \arctan (x) d x$, find as small an upper bound as you can on the value of this integral.
Solution. Note that $\arctan (x)<\frac{\pi}{2}$ for all x. (Just look at the graph!) It follows that

$$
\int_{0}^{10 / \pi} \arctan (x) d x<\int_{0}^{10 / \pi} \frac{\pi}{2} d x=\left.\frac{\pi}{2} x\right|_{0} ^{10 / \pi}=\frac{\pi}{2} \cdot \frac{10}{\pi}-\frac{\pi}{2} \cdot 0=5
$$

Good enough for me!
d. Compute the arc-length of the curve $y=\ln (\cos (x)), 0 \leq x \leq \pi / 6$.

Solution. We plug into the arc-length formula and chug away. Note that

$$
\frac{d y}{d x}=\frac{1}{\cos x} \cdot \frac{d}{d x} \cos (x)=\frac{1}{\cos x} \cdot(-\sin (x))=-\frac{\sin (x)}{\cos x}=-\tan (x),
$$

and that $\cos (\pi / 6)=\frac{1}{2}$ and $\sin (\pi / 6)=\frac{\sqrt{3}}{2}$, so $\sec (\pi / 6)=2$ and $\tan (\pi / 6)=\sqrt{3}$. Then

$$
\begin{aligned}
\text { arc length } & =\int_{0}^{\pi / 6} \sqrt{1+(-\tan (x))^{2}} d x=\int_{0}^{\pi / 6} \sqrt{1+\tan ^{2}(x)} d x \\
& =\int_{0}^{\pi / 6} \sqrt{\sec ^{2}(x)} d x=\int_{0}^{\pi / 6} \sec (x) d x=\left.\ln (\sec (x)+\tan (x))\right|_{0} ^{\pi / 6} \\
& =\ln (\sec (\pi / 6)+\tan (\pi / 6))-\ln (\sec (0)+\tan (0)) \\
& =\ln (2+\sqrt{3})-\ln (1+0)=\ln (2+\sqrt{3})
\end{aligned}
$$

since $\ln (1)=0$.
Note: If you want to know where $y=\ln (\cos (x))$ came from, look at the solution to $\mathbf{1 b}$.
e. Give a example of a function $f(x)$ such that $f(x)=1+\int_{0}^{x} f(t) d t$ for all x.

Solution. Suppose $f(x)$ satisfied the given equation. Then, by the Fundamental Theorem of Calculus, we would have that

$$
f^{\prime}(x)=\frac{d}{d x}\left(1+\int_{0}^{x} f(t) d t\right)=0+f(x)=f(x) .
$$

One well-known function satisfying this condition is $f(x)=0$, but it fails to satisfy the original equation since

$$
0 \neq 1=1+0=1+\int_{0}^{0} 0 d t
$$

The other well-known function satisfying $f^{\prime}(x)=f(x)$ is $f(x)=e^{x}$. Since

$$
e^{0}=1=1+0=1+\int_{0}^{0} e^{t} d t
$$

it has chance. We verify that it does satisfy the original equation:

$$
1+\int_{0}^{x} e^{t} d t=1+\left.e^{t}\right|_{0} ^{x}=1+\left(e^{x}-e^{0}\right)=1+e^{x}-1=e^{x}
$$

3. Do one (1) of parts a or b. [12]
a. Sketch the solid obtained by rotating the region bounded by $y=\sqrt{x}$ and $y=x$, where $0 \leq x \leq 1$, about the y-axis, and find its volume.

Solution ito a. (Disks/Washers) Note that we have $x \leq \sqrt{x}$ for $0 \leq x \leq 1$. Here's a sketch of the solid, with a typical "washer" cross-section in the picture.

Considering the sketch, it is easy to see that the washer at height y has an out radius of $R=x=y$ and an inner radius of $r=x=y^{2}$ (since $y=\sqrt{x}$), and hence area $\pi\left(R^{2}-r^{2}\right)=\pi\left(y^{2}-\left(y^{2}\right)^{2}\right)=\pi\left(y^{2}-y^{4}\right)$. Since we rotated the region about the y-axis, the washers are stacked vertically, so we must integrate over y to get the volume of the solid. Note that $0 \leq y \leq 1$ over the given region.

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} \pi\left(R^{2}-r^{2}\right) d y=\pi \int_{0}^{1}\left(y^{2}-y^{4}\right) d y=\left.\pi\left(\frac{y^{3}}{3}-\frac{y^{5}}{5}\right)\right|_{0} ^{1} \\
& =\pi\left(\frac{1^{3}}{3}-\frac{1^{5}}{5}\right)-\pi\left(\frac{0^{3}}{3}-\frac{0^{5}}{5}\right)=\pi\left(\frac{1}{3}-\frac{1}{5}\right)-\pi(0-0)=\frac{2}{15} \pi
\end{aligned}
$$

Solution il to a. (Cylindrical shells) Note that we have $x \leq \sqrt{x}$ for $0 \leq x \leq 1$. Here's a sketch of the solid, with a typical cylindrical shell in the picture.

Considering the sketch, it is easy to see that the cylinder centred on the y-axis with radius $r=x$ has height $h=\sqrt{x}-x$, and hence area $2 \pi r h=2 \pi x(\sqrt{x}-x)$. Since we rotated the region about the y-axis, the cylinders are vertical and so nested horizontally, so we must integrate over x to get the volume of the solid.

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{1} 2 \pi r h d x=2 \pi \int_{0}^{1} x(\sqrt{x}-x) d x=2 \pi \int_{0}^{1}\left(x^{3 / 2}-x^{2}\right) d x \\
& =\left.2 \pi\left(\frac{x^{5 / 2}}{5 / 2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=2 \pi\left(\frac{1^{5 / 2}}{5 / 2}-\frac{1^{3}}{3}\right)-2 \pi\left(\frac{0^{5 / 2}}{5 / 2}-\frac{0^{3}}{3}\right) \\
& =2 \pi\left(\frac{2}{5}-\frac{1}{3}\right)-2 \pi(0-0)=2 \pi \frac{1}{15}=\frac{2}{15} \pi
\end{aligned}
$$

b. Sketch the cone obtained by rotating the line $y=3 x$, where $0 \leq x \leq 2$, about the x-axis, and find its surface area.

Solution. Here's a sketch of the cone:

The cross-section of the cone at x has radius $r=y=3 x$ and $\frac{d y}{d x}=3$. Hence

$$
\begin{aligned}
\text { Surface Area } & =\int_{0}^{2} 2 \pi r \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=2 \pi \int_{0}^{2} 3 x \sqrt{1+3^{2}} d x \\
& =6 \sqrt{10} \pi \int_{0}^{2} x d x=\left.6 \sqrt{10} \pi \frac{x^{2}}{2}\right|_{0} ^{2}=6 \sqrt{10} \pi\left(\frac{2^{2}}{2}-\frac{0^{2}}{2}\right) \\
& =6 \sqrt{10} \pi(2-0)=12 \sqrt{10} \pi .
\end{aligned}
$$

$$
[\text { Total }=40]
$$

