Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, Summer 2010

Test 2

5 July, 2010

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.
- 1. Compute any four (4) of the integrals in parts a-f. $[16 = 4 \times 4 \text{ each}]$

a.
$$\int \frac{1}{4-x^2} dx$$
 b. $\int \tan(x) dx$ **c.** $\int_0^1 \frac{1}{\sqrt{x}} dx$
d. $\int \frac{x^3 + x + 1}{x^2 + 1} dx$ **e.** $\int_{-\pi/4}^{\pi/4} \sec^2(x) dx$ **f.** $\int x \ln(x) dx$

- **2.** Do any two (2) of parts **a-e**. $[12 = 2 \times 6 \text{ each}]$
 - **a.** Compute $\int_0^2 (x+1) dx$ using the Right-hand Rule.
 - **b.** Find the area of the region bounded by y = 2 + x and $y = x^2$ for $-1 \le x \le 1$.
 - **c.** Without actually computing $\int_0^{10/\pi} \arctan(x) dx$, find as small an upper bound as you can on the value of this integral.
 - **d.** Compute the arc-length of the curve $y = \ln(\cos(x)), 0 \le x \le \pi/6$.
 - **e.** Give a example of a function f(x) such that $f(x) = 1 + \int_0^x f(t) dt$ for all x.
- **3.** Do one (1) of parts **a** or **b**. [12]
 - **a.** Sketch the solid obtained by rotating the region bounded by $y = \sqrt{x}$ and y = x, where $0 \le x \le 1$, about the *y*-axis, and find its volume.
 - **b.** Sketch the cone obtained by rotating the line y = 3x, where $0 \le x \le 2$, about the *x*-axis, and find its surface area.

$$[Total = 40]$$