Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2010
Test 2
5 July, 2010

Instructions

- Show all your work. Legibly, please!
- If you have a question, ask it!
- Use the back sides of the test sheets for rough work or extra space.
- You may use a calculator and an aid sheet.

1. Compute any four (4) of the integrals in parts a-f. [16 $=4 \times 4$ each]
a. $\int \frac{1}{4-x^{2}} d x$
b. $\int \tan (x) d x$
c. $\int_{0}^{1} \frac{1}{\sqrt{x}} d x$
d. $\int \frac{x^{3}+x+1}{x^{2}+1} d x$
e. $\int_{-\pi / 4}^{\pi / 4} \sec ^{2}(x) d x$
f. $\int x \ln (x) d x$
2. Do any two (2) of parts a-e. $[12=2 \times 6$ each $]$
a. Compute $\int_{0}^{2}(x+1) d x$ using the Right-hand Rule.
b. Find the area of the region bounded by $y=2+x$ and $y=x^{2}$ for $-1 \leq x \leq 1$.
c. Without actually computing $\int_{0}^{10 / \pi} \arctan (x) d x$, find as small an upper bound as you can on the value of this integral.
d. Compute the arc-length of the curve $y=\ln (\cos (x)), 0 \leq x \leq \pi / 6$.
e. Give a example of a function $f(x)$ such that $f(x)=1+\int_{0}^{x} f(t) d t$ for all x.
3. Do one (1) of parts \mathbf{a} or \mathbf{b}. [12]
a. Sketch the solid obtained by rotating the region bounded by $y=\sqrt{x}$ and $y=x$, where $0 \leq x \leq 1$, about the y-axis, and find its volume.
b. Sketch the cone obtained by rotating the line $y=3 x$, where $0 \leq x \leq 2$, about the x-axis, and find its surface area.

$$
[\text { Total }=40]
$$

