Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2010
Solutions to Test 1

1. Do any two (2) of $\mathbf{a}-\mathbf{c}$. $[10=2 \times 5$ each $]$
a. Find the slope of the tangent line to $y=\tan (x)$ at $x=0$.

Solution. The slope of the tangent line at a given point is given by evaluating the derivative at the given point. In this case, $\frac{d y}{d x}=\frac{d}{d x} \tan (x)=\sec ^{2}(x)$. At $x=0$ this gives $\sec ^{2}(0)=\frac{1}{\cos ^{2}(0)}=\frac{1}{1}=1$, so the tangent line to $y=\tan (x)$ at $x=0$ has slope 1 .
b. Use the limit definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=x^{2}$.

Solution. Here goes:

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1^{1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1^{1}+2 \cdot 1 \cdot h+h^{2}-1^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2+h)=2+0=2
\end{aligned}
$$

c. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(2 x-1)=1$.

Solution. We need to show that for any $\varepsilon>0$ there is a $\delta>0$ such that if $|x-1|<\delta$, then $|(2 x-1)-1|<\varepsilon$. Given a $\varepsilon>0$, we reverse-engineer the $\delta>0$ we need:

$$
\begin{aligned}
|(2 x-1)-1|<\varepsilon & \Longleftrightarrow|2 x-2|<\varepsilon \\
& \Longleftrightarrow|2(x-1)|<\varepsilon \\
& \Longleftrightarrow 2|x-1|<\varepsilon \\
& \Longleftrightarrow|x-1|<\frac{\varepsilon}{2}
\end{aligned}
$$

Since each step above is reversible, it follows that that if $\delta=\frac{\varepsilon}{2}$, then $|(2 x-1)-1|<\varepsilon$ whenever $|x-1|<\delta=\frac{\varepsilon}{2}$. Thus $\lim _{x \rightarrow 1}(2 x-1)=1$ by the $\varepsilon-\delta$ definition of limits.
2. Find $\frac{d y}{d x}$ in any three (3) of a-d. $[9=3 \times 3$ each $]$
a. $y=\frac{x}{x+1}$

Solution. Apply the Quotient Rule:

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{x}{x+1}\right)=\frac{\left[\frac{d}{d x} x\right](x+1)-x\left[\frac{d}{d x}(x+1)\right]}{(x+)^{2}}=\frac{1(x+1)-x 1}{(x+)^{2}}=\frac{1}{(x+)^{2}}
$$

b. $x^{2}+y^{2}=4$

Solution i. Use implicit differentiation and the Chain Rule:

$$
\begin{aligned}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} 4 & \Longrightarrow \frac{d}{d x} x^{2}+\frac{d}{d x} t^{2}=0 \Longrightarrow 2 x+\left(\frac{d}{d y} y^{2}\right) \frac{d y}{d x}=0 \\
& \Longrightarrow 2 x+2 y \frac{d y}{d x}=0 \Longrightarrow 2 y \frac{d y}{d x}=-2 x \Longrightarrow \frac{d y}{d x}=\frac{-2 x}{2 y}=-\frac{x}{y}
\end{aligned}
$$

Solution in. Solve for y and then differentiate using the Chain Rule. First,

$$
x^{2}+y^{2}=4 \Longrightarrow y^{2}=4-x^{2} \Longrightarrow y= \pm \sqrt{\left(4-x^{2}\right)} .
$$

Second,

$$
\begin{aligned}
\frac{d y}{d x}=\frac{d}{d x} \pm \sqrt{\left(4-x^{2}\right)} & =\frac{1}{ \pm 2 \sqrt{\left(4-x^{2}\right)}} \cdot \frac{d}{d x}\left(4-x^{2}\right)=\frac{1}{ \pm 2 \sqrt{\left(4-x^{2}\right)}} \cdot(0-2 x) \\
& =\frac{-2 x}{ \pm 2 \sqrt{\left(4-x^{2}\right)}}=\frac{-x}{ \pm \sqrt{\left(4-x^{2}\right)}}=-\frac{x}{y} .
\end{aligned}
$$

c. $y=\int_{0}^{x} t \cos (3 t) d t$

Solution. By the Fundamental Theorem of Calculus:

$$
\frac{d y}{d x}=\frac{d}{d x} \int_{0}^{x} t \cos (3 t) d t=x \cos (3 t)
$$

d. $y=\ln \left(x^{3}\right)$

Solution I. Simplify, then differentiate. First, $y=\ln \left(x^{3}\right)=3 \ln (x)$. Second,

$$
\frac{d y}{d x}=\frac{d}{d x} 3 \ln (x)=3 \cdot \frac{1}{x}=\frac{3}{x}
$$

Solution iI. Differentiate using the Chain Rule, then simplify:

$$
\frac{d y}{d x}=\frac{d}{d x} \ln \left(x^{3}\right)=\frac{1}{x^{3}} \cdot \frac{d}{d x} x^{3}=\frac{1}{x^{3}} \cdot 3 x^{2}=\frac{3}{x}
$$

3. Do any two (2) of a-c. [10 $=2 \times 5$ each]
a. Explain why $\lim _{x \rightarrow 0} \frac{x}{|x|}$ doesn't exist.

Solution. Note that when $x>0,|x|=x$, so $\frac{x}{|x|}=1$, and when $x<0, x=-|x|$, so $\frac{x}{|x|}=-1$. It follows that $\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}}-1=-1$ and $\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{+}} 1=1$, so $\lim _{x \rightarrow 0} \frac{x}{|x|}$ can't exist since $-1 \neq 1$.
b. A spherical balloon is being inflated at a rate of $1 \mathrm{~m}^{3} / \mathrm{s}$. How is its radius changing at the instant that it is equal to $2 m$? [The volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.]
Solution. On the one hand, we are given that $\frac{d V}{d t}=1$; on the other hand, using the Chain Rule,

$$
\frac{d V}{d t}=\frac{d}{d t} \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi\left(\frac{d}{d r} r^{3}\right) \frac{d r}{d t}=\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

It follows that $1=\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$, so $\frac{d r}{d t}=\frac{1}{4 \pi r^{2}}$. Thus, at the instant that $r=2 m$, we have $\frac{d r}{d t}=\frac{1}{4 \pi 2^{2}}=\frac{1}{16 \pi} \mathrm{~m} / \mathrm{s}$.
c. Use the Left-Hand Rule to find $\int_{1}^{3} x d x$. $\left[\sum_{i=0}^{n-1} i=0+1+\cdots+(n-1)=\frac{n(n-1)}{2}\right]$

Solution. Not letting the right hand know what the left hand is doing:

$$
\begin{aligned}
\int_{1}^{3} x d x & \left.=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{3-1}{n} \cdot\left(1+i \frac{3-1}{n}\right) \quad \text { [Since our function is just } f(x)=x .\right] \\
& =\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{2}{n}\left(1+i \frac{2}{n}\right)=\lim _{n \rightarrow \infty} \frac{2}{n} \sum_{i=0}^{n-1}\left(1+i \frac{2}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(\left[\sum_{i=0}^{n-1} 1\right]+\left[\sum_{i=0}^{n-1} i \frac{2}{n}\right]\right)=\lim _{n \rightarrow \infty} \frac{2}{n}\left(n+\left[\frac{2}{n} \sum_{i=0}^{n-1} i\right]\right) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}\left(n+\frac{2}{n} \cdot \frac{n(n-1)}{2} i\right)=\lim _{n \rightarrow \infty} \frac{2}{n}(n+(n-1)) \\
& =\lim _{n \rightarrow \infty} \frac{2}{n}(2 n-1)=\lim _{n \rightarrow \infty}\left(4-\frac{2}{n}\right)=4-0=4
\end{aligned}
$$

4. Let $f(x)=\frac{x^{2}}{x^{2}+1}$. Find the domain and all the intercepts, vertical and horizontal asymptotes, and maxima and minima of $f(x)$, and sketch its graph using this information. [11]
Solution. We run through the checklist:
i. Domain. $f(x)=\frac{x^{2}}{x^{2}+1}$ always makes sense because the denominator $x^{2}+1 \geq 1>0$ for all x. Thus the domain of $f(x)$ is all of \mathbb{R}; note that $f(x)$ must also be continuous everywhere.
ii. Intercepts. $f(0)=0$, so $(0,0)$ is the y-intercept. Since $f(x)=\frac{x^{2}}{x^{2}+1}=0$ is only possible when the numerator is 0 , any x-intercepts occur when $x^{2}=0$, i.e. when $x=0$. Thus $(0,0)$ is the only x-intercept, as well as the y-intercept.
iii. Vertical asymptotes. Since $f(x)$ is defined and continuous on all of \mathbb{R} it has no vertical asymptotes. (As noted in i above, this is because the denominator is never 0 .)
iv. Horizontal asymptotes. We check how $f(x)$ behaves as $x \rightarrow \pm \infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{1+\frac{1}{x^{2}}}=\frac{1}{1+0^{+}}=1^{-} \\
& \lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{x^{2}}{x^{2}+1} \cdot \frac{1 / x^{2}}{1 / x^{2}}=\lim _{x \rightarrow-\infty} \frac{1}{1+\frac{1}{x^{2}}}=\frac{1}{1+0+)}=1^{-}
\end{aligned}
$$

Thus $f(x)$ has $x=1$ as a horizontal asymptote in both directions. Note that because $\frac{x^{2}}{x^{2}+1}=\frac{1}{1+1 / x^{2}}<1$ for all $x, f(x)$ approaches this asymptote from below in both directions.
v. Maxima and minima. Since $f(x)$ is defined and continuous on all of \mathbb{R}, we only have to check any critical points to find any local maxima and minima. We first compute the derivative:

$$
\begin{aligned}
f^{\prime}(x)=\frac{d}{d x}\left(\frac{x^{2}}{x^{2}+1}\right) & =\frac{\left[\frac{d}{d x} x^{2}\right]\left(x^{2}+1\right)-x^{2}\left[\frac{d}{d x}\left(x^{2}+1\right)\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x\left(x^{2}+1\right)-x^{2}(2 x+0)}{\left(x^{2}+1\right)^{2}} \\
& =\frac{2 x^{3}+2 x-2 x^{3}}{\left(x^{2}+1\right)^{2}}=\frac{2 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

Since the denominator is never $0, f^{\prime}(x)$ is defined for all x and $f^{\prime}(x)=0$ only when the numerator, $2 x$, is 0 , i.e. when $x=0$. Thus $x=0$ is the only critical point. From the behaviour around the critical point,

$$
\begin{array}{cccc}
x & (-\infty, 0) & 0 & (0, \infty) \\
f^{\prime}(x) & <0 & 0 & >0 \\
f(x) & \downarrow & 0 & \uparrow
\end{array}
$$

$f(0)=0$ is a local (and absolute!) minimum. Note that $f(x)$ has no local maxima.
vi. Graph.

This graph was drawn using a program called EdenGraph.
Whew!
Bonus. Find any inflection points of $f(x)=\frac{x^{2}}{x^{2}+1}$ as well. [3]
Solution. We add one more item to the checklist above:
vii. Inflection points. Note that $f^{\prime}(x)$ is defined and differentiable for all x. We first compute the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x} f^{\prime}(x)=\frac{d}{d x}\left(\frac{2 x}{\left(x^{2}+1\right)^{2}}\right)=\frac{\left[\frac{d}{d x} 2 x\right]\left(x^{2}+1\right)^{2}-2 x\left[\frac{d}{d x}\left(x^{2}+1\right)^{2}\right]}{\left(\left(x^{2}+1\right)^{2}\right)^{2}} \\
& =\frac{2\left(x^{2}+1\right)^{2}-2 x\left[2\left(x^{2}+1\right) \cdot \frac{d}{d x}\left(x^{2}+1\right)\right]}{\left(x^{2}+1\right)^{4}} \\
& =\frac{2\left(x^{2}+1\right)^{2}-2 x\left[2\left(x^{2}+1\right) \cdot(2 x+0)\right]}{\left(x^{2}+1\right)^{4}}=\frac{2\left(x^{2}+1\right)^{2}-2 x\left[4 x\left(x^{2}+1\right)\right]}{\left(x^{2}+1\right)^{4}} \\
& =\frac{2\left(x^{2}+1\right)^{2}-8 x^{2}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{4}}=\frac{2\left(x^{2}+1\right)-8 x^{2}}{\left(x^{2}+1\right)^{3}}=\frac{2-6 x^{2}}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

Since the denominator is never $0, f^{\prime \prime}(x)$ is defined for all x and $f^{\prime \prime}(x)=0$ only when the numerator, $2-6 x^{2}$, is 0 , i.e. when $x= \pm \frac{1}{\sqrt{3}}$. Thus the potential inflection points of $f(x)$ are $x=-\frac{1}{\sqrt{3}}$ and $x=\frac{1}{\sqrt{3}}$. From the behaviour around these points,

$$
\begin{array}{cccccc}
x & \left(-\infty,-\frac{1}{\sqrt{3}}\right) & -\frac{1}{\sqrt{3}} & \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) & \frac{1}{\sqrt{3}} & \left(\frac{1}{\sqrt{3}}, \infty\right) \\
f^{\prime \prime}(x) & <0 & 0 & >0 & 0 & <0 \\
f^{\prime}(x) & \downarrow & & \uparrow & & \downarrow \\
f(x) & \text { concave down } & \frac{1}{4} & \text { concave up } & \frac{1}{4} & \text { concave down }
\end{array}
$$

it follows that $f(x)$ has two inflection points, at $x=-\frac{1}{\sqrt{3}}$ and $x=\frac{1}{\sqrt{3}}$.
Bonus whew!

