Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2010

Solutions to Assignment \#7

\qquad
An ellipse in standard position has an equation of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.

2. Find the area of the enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ without using calculus. [2]

Hint: Distort the unit circle $x^{2}+y^{2}=1$ into the ellipse. How does the distortion affect areas?

Solution. Consider the (linear!) transformation that sends the point (x, y) to the point $(u, v)=(a x, b y)$, it i.e. stretch by a factor of a parallel to the x-axis and a factor of b parallel to the y-axis. Observe that

$$
\frac{u^{2}}{a^{2}}+\frac{v^{2}}{b^{2}}=1 \Longleftrightarrow \frac{(a x)^{2}}{a^{2}}+\frac{(b y)^{2}}{b^{2}}=1 \Longleftrightarrow x^{2}+y^{2}=1,
$$

so the transformation distorts the unit circle into the given ellipse.
How does the transformation affect areas? The unit square, with vertices $(0,0),(1,0)$, $(0,1)$, and $(1,1)$, which has area 1 , makes an easy test case. The linear transformation takes the unit square to the rectangle with vertices $(0,0),(a, 0),(0, b)$, and (a, b), which has area $a b$. Thus the linear transformation changes areas by a factor of $a b$. (You can pretty easily check, if you wish to, that this works for any square or rectangle, not just the unit square.)

The area of the unit circle is $\pi 1^{2}=\pi$. It follows that the area of the given ellipse should be $a b$ times the area of the unit circle, namely $\pi a b$.

1. Find the area of the enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ using calculus. [8]

Solution. We can assume that a and b are both positive. (If not, replace a by $|a|$ and/or b by $|b|$ as necessary.) Solving the equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ for y, we see that the upper part of the ellipse is given by $y=b \sqrt{1-\frac{x^{2}}{a^{2}}}$, and the lower part by $y=-b \sqrt{1-\frac{x^{2}}{a^{2}}}$, both for $-a \leq x \leq a$. The area enclosed by the ellipse is then the area between these curves.

As the first step, we will use the trig substitution $x=a \sin (\theta)$, so $d x=a \cos (\theta) d \theta$. We will then keep the limits for x, requiring us to substitute back later. Note that it follows that $\sin (\theta)=\frac{x}{a}$, so $\cos (\theta)=\sqrt{1-\frac{x^{2}}{a^{2}}}$ and $\theta=\arcsin \left(\frac{x}{a}\right)$.

$$
\begin{aligned}
\text { Area } & =\int_{-a}^{a}\left[b \sqrt{1-\frac{x^{2}}{a^{2}}}-\left(-b \sqrt{1-\frac{x^{2}}{a^{2}}}\right)\right] d x=\int_{-a}^{a} 2 b \sqrt{1-\frac{x^{2}}{a^{2}}} d x \\
& =2 b \int_{x=-a}^{x=a} \sqrt{1-\frac{a^{2} \sin ^{2}(\theta)}{a^{2}}} a \cos (\theta) d \theta=2 a b \int_{x=-a}^{x=a} \sqrt{1-\sin ^{2}(\theta)} \cos (\theta) d \theta \\
& =2 a b \int_{x=-a}^{x=a} \cos (\theta) \cos (\theta) d \theta=2 a b \int_{x=-a}^{x=a} \cos ^{2}(\theta) d \theta
\end{aligned}
$$

We now use the double-angle formula $\cos (2 \theta)=2 \cos ^{2}(\theta)-1$,
so $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta)) \ldots$
$=2 a b \int_{x=-a}^{x=a} \frac{1}{2}(1+\cos (2 \theta)) d \theta$
\ldots and the substitution $u=2 \theta$, so $d u=2 d \theta$ and $d \theta=\frac{1}{2} d u$.
$=a b \int_{x=-a}^{x=a}(1+\cos (u)) \frac{1}{2} d u=\left.\frac{1}{2} a b(u+\sin (u))\right|_{x=-a} ^{x=a}$
We now substitute back into θ, use the double-angle formula

$$
\begin{aligned}
& \sin (2 \theta)=2 \sin (\theta) \cos (\theta) \ldots \\
= & \left.\frac{1}{2} a b(2 \theta+\sin (2 \theta))\right|_{x=-a} ^{x=a}=\left.\frac{1}{2} a b(2 \theta+2 \sin (\theta) \cos (\theta))\right|_{x=-a} ^{x=a}
\end{aligned}
$$

\ldots substitute back into x, and solve away.

$$
\begin{aligned}
& =\left.a b(\theta+\sin (\theta) \cos (\theta))\right|_{x=-a} ^{x=a}=\left.a b\left(\arcsin \left(\frac{x}{a}\right)+\frac{x}{a} \sqrt{1-\frac{x^{2}}{a^{2}}}\right)\right|_{x=-a} ^{x=a} \\
& =a b\left(\arcsin \left(\frac{a}{a}\right)+\frac{a}{a} \sqrt{1-\frac{a^{2}}{a^{2}}}\right)-a b\left(\arcsin \left(\frac{-a}{a}\right)+\frac{-a}{a} \sqrt{1-\frac{(-a)^{2}}{a^{2}}}\right) \\
& =a b(\arcsin (1)+1 \cdot \sqrt{1-1})-a b(\arcsin (-1)+1 \cdot \sqrt{1-1}) \\
& =a b\left(\frac{\pi}{2}+0\right)-a b\left(-\frac{\pi}{2}+0\right)=\pi a b
\end{aligned}
$$

Thus the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\pi a b$.

