Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, Summer 2010

Solution to Assignment #5 An Integral Equation

1. Assume f(x) is a continuous function that satisfies the equation $(f(x))^2 = \int_0^x f(t) dt$. What function(s) could f(x) be? [10]

Hint: Differentiate both sides and solve for f'(x) first.

SOLUTION. Note first that given equation implies that $(f(0))^2 = \int_0^0 f(t) dt = 0$, so it must be the case that $f(0) = \pm \sqrt{0} = 0$.

Following the hint, we differentiate both sides of the given equation:

$$(f(x))^{2} = \int_{0}^{x} f(t) dt \implies \frac{d}{dx} (f(x))^{2} = \frac{d}{dx} \int_{0}^{x} f(t) dt$$

$$\implies 2f(x)f'(x) = f(x)$$
[By the Chain Rule and the Fundamental Theorem.]

$$\implies f(x) = 0 \text{ or } 2f'(x) = 1$$
[Since we can divide by $f(x)$ if it isn't 0.]

$$\implies f(x) = 0 \text{ or } f'(x) = \frac{1}{2}$$

$$\implies f(x) = 0 \text{ or } f(x) = \frac{1}{2}x + C$$
[Since $f(x)$ is an antiderivative of $f'(x)$.]

$$\implies f(x) = 0 \text{ or } f(x) = \frac{1}{2}x$$
[Since we must have $f(0) = 0$.]

Thus the only continuous functions satisfying the given integral equations are f(x) = 0and $f(x) = \frac{1}{2}x$.