Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2010

Solution to Assignment \#5
 An Integral Equation

1. Assume $f(x)$ is a continuous function that satisfies the equation $(f(x))^{2}=\int_{0}^{x} f(t) d t$. What function(s) could $f(x)$ be? [10]
Hint: Differentiate both sides and solve for $f^{\prime}(x)$ first.
Solution. Note first that given equation implies that $(f(0))^{2}=\int_{0}^{0} f(t) d t=0$, so it must be the case that $f(0)= \pm \sqrt{0}=0$.

Following the hint, we differentiate both sides of the given equation:

$$
\begin{aligned}
(f(x))^{2}=\int_{0}^{x} f(t) d t & \Longrightarrow \frac{d}{d x}(f(x))^{2}=\frac{d}{d x} \int_{0}^{x} f(t) d t \\
& \Longrightarrow 2 f(x) f^{\prime}(x)=f(x)
\end{aligned}
$$

[By the Chain Rule and the Fundamental Theorem.]
$\Longrightarrow \quad f(x)=0$ or $2 f^{\prime}(x)=1$
[Since we can divide by $f(x)$ if it isn't 0.]

$$
\begin{aligned}
& \Longrightarrow \quad f(x)=0 \text { or } f^{\prime}(x)=\frac{1}{2} \\
& \Longrightarrow \quad f(x)=0 \text { or } f(x)=\frac{1}{2} x+C
\end{aligned}
$$

[Since $f(x)$ is an antiderivative of $f^{\prime}(x)$.]
$\Longrightarrow \quad f(x)=0$ or $f(x)=\frac{1}{2} x$
[Since we must have $f(0)=0$.]
Thus the only continuous functions satisfying the given integral equations are $f(x)=0$ and $f(x)=\frac{1}{2} x$.

