Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2010

 Quizzes

 Quizzes}

Quiz \#1 Wednesday, 12 May, 2010. [10 minutes]

1. Suppose the graph of $y=x^{2}$ is stretched vertically by a factor of 3 , and then shifted by 2 units to the right and 1 unit down. Find the formula of the parabola with this curve as its graph. [5]
2. Use the Limit Laws to evaluate $\lim _{x \rightarrow 0} \frac{x^{2}-1}{x^{2}+1}$. [5]

Quiz \#2 Monday, 17 May, 2010. [12 minutes]
Do one (1) of the following two questions.

1. Find all the vertical and horizontal asymptotes of $f(x)=\frac{x}{x-1}$ and give a rough sketch of its graph. [10]
2. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1}(3 x-1)=2$. [10]

Quiz \#3 Wednesday, 19 May, 2010. [10 minutes]

1. Compute the derivative of $f(x)=\frac{x^{2}-2 x}{x-1}$. [5]
2. Compute the derivative of $g(x)=\arctan \left(e^{x}\right)$. [5]

Quiz \#4 Wednesday, 26 May, 2010. [12 minutes]

1. Use logarithmic differentiation to compute the derivative of $g(x)=x^{x}$. [5]
2. A pebble is dropped into a still pond, creating a circular ripple that moves outward from its centre at $2 \mathrm{~m} / \mathrm{s}$. How is the area enclosed by the ripple changing at the instant that the radius of the ripple is 3 m ? [5]

(Just in case: The area of a circle with radius r is πr^{2}.)
Quiz \#5 Monday, 31 May, 2010. [15 minutes]
3. Let $f(x)=\frac{x}{x^{2}+1}$. Find the domain and all the intercepts, vertical and horizontal asymptotes, and local maxima and minima of $f(x)$, and sketch its graph using this information. [10]

Quiz \#6 Wednesday, 2 June, 2010. [10 minutes]

1. Use the Left-Hand Rule to compute $\int_{0}^{1}(x+1) d x$, the area between the line $y=x+1$ and the x-axis for $0 \leq x \leq 1$. [10]
Hint: You may need the formula $\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
Quiz \#7 Monday, 7 June, 2010. [10 minutes]
2. Compute $\int_{0}^{2}\left(x^{2}-2 x+1\right) d x$. [10]

Quiz \#8 Wednesday, 9 June, 2010. [10 minutes]

1. Find the area between $y=x \cos \left(x^{2}\right)$ and the x-axis for $-\sqrt{\frac{\pi}{2}} \leq x \leq \sqrt{\frac{\pi}{2}}$. [10]

Quiz \#9 Monday, 14 June, 2010. [10 minutes]
The region between $y=2-x$ and the x-axis, for $0 \leq x \leq 2$, is rotated about the y-axis. Find the volume of the resulting solid of revolution using both

1. the disk method [5] and
2. the method of cylindrical shells. [5]

Quiz \#10 Wednesday, 16 June, 2010. [10 minutes]

1. Compute $\int_{1}^{e}(\ln (x))^{2} d x$. [10]

Quiz \#11 Monday, 21 June, 2010. [12 minutes]
Compute each of the following integrals:

1. $\int_{0}^{\pi / 2} \cos ^{3}(x) \sin ^{2}(x) d x \quad$ [5]
2. $\int \sec ^{3}(x) d x \quad[5]$

Quiz \#12 Wednesday, 23 June, 2010. [15 minutes]
Compute each of the following integrals:

1. $\int \frac{1}{\sqrt{4-x^{2}}} d x$
[5]
2. $\int_{1}^{2} x \sqrt{x^{2}-1} d x \quad[5]$

Quiz \#13 Monday, 28 June, 2010. [12 minutes]

1. Compute $\int \frac{2 x^{2}+3}{\left(x^{2}+4\right)(x-1)} d x$ [10]

Quiz \#14 Wednesday, 30 June, 2010. [10 minutes]

1. Compute $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$ [10]

Quiz \#15 Monday, 5 July, 2010. [10 minutes]

1. Compute the arc-length of the curve $y=\frac{2}{3} x^{3 / 2}$, where $0 \leq x \leq 1$.

Quiz \#16 Wednesday, 7 July, 2010. [15 minutes]

1. Find the arc-length of the parametric curve $x=t \cos (t)$ and $y=t \sin (t)$, where $0 \leq t \leq 1$. [10]
Quiz \#17 Monday, 12 July, 2010. [15 minutes]
2. Sketch the curve given by $r=\sin (\theta), 0 \leq \theta \leq \pi$, in polar coordinates. [2]
3. Sketch the curve given by $r=\sin (\theta), \pi \leq \theta \leq 2 \pi$, in polar coordinates. [2]
4. Find the area of the region enclosed by the curve given by $r=\sin (\theta), 0 \leq \theta \leq \pi$, in polar coordinates. [6]
Bonus: Find an equation in Cartesian coordinates for the curve given by $r=\sin (\theta)$, $0 \leq \theta \leq \pi$, in polar coordinates. [2]
Quiz \#18 Wednesday, 14 July, 2010. [12 minutes]
5. Use the definition of convergence of a series to compute $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$. [10]

Hint: Note that $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$.
Quiz \#19 Monday, 19 July, 2010. [10 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{1}{n^{2}+1}$ converges or diverges. [10]

Quiz \#20 Wednesday, 21 July, 2010. [12 minutes]

1. Determine whether the series $\sum_{n=0}^{\infty} \frac{\cos (n \pi)}{1+n}$ converges conditionally, converges absolutely, or diverges. [10]
Quiz \#21 Monday, 26 July, 2010. [15 minutes]
2. Find the radius and interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{n 3^{n}}{2^{n+1}} x^{n}$. [10]

Quiz \#22 Wednesday, 28 July, 2010. [15 minutes]

1. Find the Taylor series of $f(x)=\ln (x)$ at $a=1$. [10]
