
Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Quiz Solutions

Quiz #1 Wednesday, 12 May, 2010. [10 minutes]

1. Suppose the graph of y = x2 is stretched vertically by a factor of 3, and then shifted
by 2 units to the right and 1 unit down. Find the formula of the parabola with this
curve as its graph. [5]

2. Use the Limit Laws to evaluate lim
x→0

x2 − 1

x2 + 1
. [5]

Solution to 1. To stretch the graph of y = x2 vertically by a factor of 3, we simply
multiply the output by 3 to get y = 3x2. Shifting the graph by 2 units to the right
corresponds to replacing x by x− 2 to get y = 3(x− 2)2. To shift the graph down by 1, we
just subtract 1 to get y = 3(x−2)2−1. It follows that the formula of the desired parabola
is y = 3(x− 2)2 − 1 = 3x2 − 12x+ 11. �

Solution to 2. Here goes – you should be able to identify the Limit Law(s) used at each
step for yourself pretty readily:

lim
x→0

x2 − 1

x2 + 1
=

lim
x→0

(
x2 − 1

)
lim
x→0

(x2 + 1)
=

(
lim
x→0

x2
)
−
(

lim
x→0

1
)

(
lim
x→0

x2
)

+
(

lim
x→0

1
) =

02 − 1

02 + 1
=
−1

1
= −1 �

Quiz #2 Monday, 17 May, 2010. [12 minutes]

Do one (1) of the following two questions.

1. Find all the vertical and horizontal asymptotes of f(x) =
x

x− 1
and give a rough

sketch of its graph. [10]

2. Use the ε–δ definition of limits to verify that lim
x→1

(3x− 1) = 2. [10]

Solution to 1. To find the horizontal asymptotes, we need only compute the limits of
f(x) as x tends to +∞ and −∞, respectively, and see what happens:

lim
x→+∞

x

x− 1
= lim
x→+∞

x

x− 1
· 1/x

1/x
= lim
x→+∞

1

1− 1/x
=

1

1− 0
= 1+

lim
x→−∞

x

x− 1
= lim
x→−∞

x

x− 1
· 1/x

1/x
= lim
x→−∞

1

1− 1/x
=

1

1 + 0
= 1−

Thus f(x) has y = 1 as an asymptote in both directions. Note that it approaches this
asymptote from above when x→ +∞ and from below when x→ −∞.

To find any vertical asymptotes, we first need to find the points at which f(x) is

undefined. Since the expression
x

x− 1
makes sense for any x unless the denominator is 0,
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i.e. when x = 1. To actually check for vertical asymptotes at, we now compute the limits
f(x) as x tends to 1 from the left and the right, respectively, and see what happens:

lim
x→1−

x

x− 1
=

1

1− − 1
=

1

0−
= −∞

lim
x→1+

x

x− 1
=

1

1+ − 1
=

1

0+
= +∞

Thus f(x) has a vertical asymptote at x = 1; f(x) shoots down to −∞ as x approaches 1
from the left and f(x) shoots up to +∞ as x approaches 1 from the right.

To graph f(x) it’s also convenient to note that f(0) = 0
0−1 = 0, so (0, 0) is both and

x- and y-intercept. Here’s a graph of f(x) =
x

x− 1
:
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This graph was created using Yacas (“Yet Another Computer Algebra System”), a free
program that can do much of what Maple and Mathematica can. �

Solution to 2. We need to show that for any ε > 0 there is a δ > 0 such that if
|x− 1| < δ, then |(3x− 1)− 2| < ε.

Suppose, then, that an ε > 0 is given. We will find a corresponding δ > 0 by reverse-
engineering |(3x− 1)− 2| < ε to look a much as possible like |x− 1| < δ:

|(3x− 1)− 2| < ε⇐⇒ |3x− 3| < ε

⇐⇒ |3(x− 1)| < ε

⇐⇒ 3 |x− 1| < ε

⇐⇒ |x− 1| < ε

3

Since the steps are all reversible, it follows that δ = ε
3 does the job: if |x − 1| < δ, then

|(3x− 1)− 2| < ε.
It follows by the ε–δ definition of limits that lim

x→1
(3x− 1) = 2. �
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Quiz #3 Wednesday, 19 May, 2010. [10 minutes]

1. Compute the derivative of f(x) =
x2 − 2x

x− 1
. [5]

2. Compute the derivative of g(x) = arctan (ex). [5]

Solution to 1. Our main tool here is the Quotient Rule:

f ′(x) =
d

dx

(
x2 − 2x

x− 1

)
=

[
d
dx

(
x2 − 2x

)]
· (x− 1)−

(
x2 − 2x

)
·
[
d
dx (x− 1)

]
(x− 1)2

=
(2x− 2) · (x− 1)−

(
x2 − 2x

)
· 1

(x− 1)2

=
2x2 − 4x+ 2− x2 + 2x

(x− 1)2

=
x2 − 2x+ 2

(x− 1)2

For those determined to simplify further, one could rewrite x2− 2x+ 2 as (x− 1)2 + 1 and
take it from there, but one doesn’t really gain much by this. �

Solution to 2. The main tool for this one is the Chain Rule:

g′(x) =
d

dx
arctan (ex)

= arctan′ (ex) · d
dx
ex

=
1

1 + (ex)
2 · e

x

=
ex

1 + e2x

Those who really want to could also rewrite this as 1
e−x+ex . �
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Quiz #4 Wednesday, 26 May, 2010. [12 minutes]

1. Use logarithmic differentiation to compute the derivative of g(x) = xx. [5]

2. A pebble is dropped into a still pond, creating a circular ripple that moves outward
from its centre at 2 m/s. How is the area enclosed by the ripple changing at the
instant that the radius of the ripple is 3 m? [5]

(Just in case: The area of a circle with radius r is πr2.)

Solution to 1. We will take the derivative of ln (g(x)) and then solve for g′(x). On the
one hand,

d

dx
ln (g(x)) =

d

dx
ln (xx) =

d

dx
(xln (x)) [Using properties of logarithms.]

=

(
d

dx
x

)
· ln (x) + x · d

dx
ln (x) [Using the Product Rule.]

= 1 · ln (x) + x · 1

x
= ln (x) + 1 ,

and on the other hand, it follows from the Chain Rule that

d

dx
ln (g(x)) =

1

g(x)
· g′(x) .

Hence

g′(x) = g(x) · d
dx

ln (g(x)) = xx · (ln (x) + 1) .

(Those with a taste for perversity may rearrange this as

g′(x) = xx · (ln (x) + 1) = xxln (x) + xx = ln
(
x(x

x)
)

+ xx ,

but that’s just a little sickening . . . :-) �

Solution to 2. The area of a circle of radius r is A = πr2; we wish to know dA
dt at the

instant in question. Using the Chain Rule,

dA

dt
=

d

dt
πr2 = π

(
d

dr
r2
)
· dr
dt

= π · 2r dr
dt

= 2πr
dr

dt
.

Plugging in the given values, that r = 3 at the instant we’re interested in and that dr
dt = 2,

we thus get:
dA

dt
= 2π · 3 · 2 = 12π

Thus the area enclosed by the ripple is changing at a rate of 12π m2/s at the instant in
question. �

4



Quiz #5 Monday, 31 May, 2010. [15 minutes]

1. Let f(x) =
x

x2 + 1
. Find the domain and all the intercepts, vertical and horizontal

asymptotes, and local maxima and minima of f(x), and sketch its graph using this
information. [10]

Solution. Here goes!

i. (Domain.) The expression x
x2+1 makes sense for all x. (Note that the denominator is

always ≥ 1.) Thus the domain of f(x) is all of R. �

ii. (Intercepts.) f(0) = 0, so (0, 0) is the only x-intercept. Since x
x2+1 can only equal 0 if

the numerator, x, is 0, (0, 0) is also the only y-intercept. �

iii. (Vertical asymptotes.) Since there are no points at which f(x) is not defined and
continuous, it has no vertical asymptotes. �

iv. (Horizontal asymptotes.) Since

lim
x→+∞

x

x2 + 1
= lim
x→+∞

x

x2 + 1
· 1/x2

1/x2
= lim
x→+∞

1
x

1 + 1
x2

=
0

1 + 0
= 0 and

lim
x→−∞

x

x2 + 1
= lim
x→−∞

x

x2 + 1
· 1/x2

1/x2
= lim
x→−∞

1
x

1 + 1
x2

=
0

1 + 0
= 1 ,

f(x) has the horizontal asymptote y = 0 in both directions. Note that as x → +∞,
x

x2+1 > 0, since the numerator and denominator are both positive when x > 0.
Similarly, as x→ −∞, x

x2+1 < 0, since the numerator is negative and the denominator
is positive when x < 0. It follows that f(x) approaches the horizontal asymptote y = 0
from above when heading out to +∞, and from below when heading out to −∞. �

v. (Local maxima and minima.) We’ll need the derivative of f(x), which we compute
using the Quotient Rule:

f ′(x) =
dx
dx ·

(
x2 + 1

)
− x · ddx (x2 + 1)

(x2 + 1)
2 =

1 ·
(
x2 + 1

)
− x · 2x

(x2 + 1)
2 =

1− x2

(x2 + 1)
2

To fond the critical points, observe that f ′(x) = 0 exactly when 1 − x2 = 0. Since
1−x2 = (1 +x)(1−x), this means that f ′(x) = 0 for x = −1 and x+ 1. We construct
the usual table to determine if these are local maxima, minima, or neither:

x (−∞,−1) −1 (−1, 1) 1 (1,∞)
f ′(x) < 0 0 > 0 0 < 0
f(x) ↓ − 1

2 ↑ 1
2 ↓

It follows that f(−1) − − 1
2 is a local minimum and f(1) = 1

2 is a local maximum of
f(x). Note that f ′(x), like f(x), is defined and continuous everywhere, so the critical
points are all we need to check when looking for local maxima and minima. �
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vi. (Graph.) Here’s a graph of f(x) =
x

x2 + 1
:
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This graph was created using Yacas (“Yet Another Computer Algebra System”), a free
program that can do much of what Maple and Mathematica can. �

That’s all, folks! �

Quiz #6 Wednesday, 2 June, 2010. [10 minutes]

1. Use the Left-Hand Rule to compute

∫ 1

0

(x+ 1) dx, the area between the line y = x+ 1

and the x-axis for 0 ≤ x ≤ 1. [10]

Hint: You may need the formula

n∑
i=1

i = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Solution. We plug f(x) = x+ 1, a = 0, and b = 1 into the Left-Hand Rule formula and
compute the resulting limit:

∫ 1

0

(x+ 1) dx = lim
n→∞

n−1∑
i=0

b− a
n

f

(
a+ i

b− a
n

)
= lim
n→∞

n−1∑
i=0

1− 0

n
f

(
0 + i

1− 0

n

)

= lim
n→∞

n−1∑
i=0

1

n
f

(
i

n

)
= lim
n→∞

n−1∑
i=0

1

n

(
i

n
+ 1

)
= lim
n→∞

n−1∑
i=0

(
i

n2
+

1

n

)

=

(
lim
n→∞

n−1∑
i=0

i

n2

)
+

(
lim
n→∞

n−1∑
i=0

1

n

)
=

(
lim
n→∞

1

n2

n−1∑
i=0

i

)
+

(
lim
n→∞

n
1

n

)
=

(
lim
n→∞

1

n2
(n− 1)n

2

)
+
(

lim
n→∞

1
)

=

(
lim
n→∞

n− 1

2n

)
+ 1

=

(
lim
n→∞

n− 1

2n
· 1/n

1/n

)
+ 1 =

(
lim
n→∞

1− 1
n

2

)
+ 1 =

1− 0

2
+ 1 =

3

2
�
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Quiz #7 Monday, 7 June, 2010. [10 minutes]

1. Compute

∫ 2

0

(
x2 − 2x+ 1

)
dx. [10]

Solution. Here goes, in entirely excessive detail!∫ 2

0

(
x2 − 2x+ 1

)
dx =

∫ 2

0

x2 dx−
∫ 2

0

2x dx+

∫ 2

0

1 dx [Linearity.]

=
x3

3

∣∣∣∣2
0

− 2
x2

2

∣∣∣∣2
0

+ x|20 [Power Rule.]

=

(
23

3
− 03

3

)
−
(

22

2
− 02

2

)
+ (2− 0) [Putting in the numbers.]

=
8

3
− 2 + 2 =

8

3
[Arithmetic.] �

Quiz #8 Wednesday, 9 June, 2010. [10 minutes]

1. Find the area between y = x cos
(
x2
)

and the x-axis for −
√

π
2 ≤ x ≤

√
π
2 . [10]

Solution. Note that the x-axis is the line y = 0. Observe that when −
√

π
2 ≤ x ≤ 0,

0 ≤ x2 ≤ π
2 , so cos

(
x2
)
≥ 0 and hence x cos

(
x2
)
≤ 0. Similarly, when 0 ≤ x ≤

√
π
2 ,

0 ≤ x2 ≤ π
2 , so cos

(
x2
)
≥ 0 and hence x cos

(
x2
)
≥ 0. The area we want, therefore, is the

sum of two definite integrals, which we evaluate with the help of the Substitution Rule:

Area =

∫ 0

−
√
π/2

[
0− x cos

(
x2
)]
dx+

∫ √π/2
0

[
x cos

(
x2
)
− 0
]
dx

Using u = x2, so du = 2x dx, and thus x dx =
1

2
du, and

changing limits,
x −

√
π/2 0

√
π/2

u π/2 0 π/2
we get:

=

∫ 0

π/2

−1

2
cos(u) du+

∫ π/2

0

1

2
cos(u) du

Since

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx, we now get:

=

∫ π/2

0

1

2
cos(u) du+

∫ π/2

0

1

2
cos(u) du

=

∫ π/2

0

cos(u) du = sin(u)|π/20 = sin
(π

2

)
− sin (0) = 1− 0 = 1 �
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Quiz #9 Monday, 14 June, 2010. [10 minutes]

The region between y = 2 − x and the x-axis, for 0 ≤ x ≤ 2, is rotated about the
y-axis. Find the volume of the resulting solid of revolution using both

1. the disk method [5] and

2. the method of cylindrical shells. [5]

Solution to 1. Note that if x is between 0 and 2, y = 2 − x is also between 0 and 2.
The disk at height y = 2 − x would have radius R = x = 2 − y. Thus the volume of the
solid of revolution in this case is:∫ 2

0

πR2 dy =

∫ 2

0

πx2 dy =

∫ 2

0

(2− y)2 dy

=

∫ 2

0

(
4− 4y + y2

)
dy = π

(
4y − 4

y2

2
+
y3

3

)∣∣∣∣2
0

= π

(
4 · 2− 4

4

2
+

8

3

)
− π

(
4 · 0− 4

0

2
+

0

3

)
= π · 8

3
− π · 0 =

8

3
π �

Solution to 2. The cylindrical shell at x would have radius R = x and height h = y =
2− x. Thus the volume of the solid of revolution in this case is:∫ 2

0

2πRhdx =

∫ 2

0

2πxy dx =

∫ 2

0

2πx(2− x) dx

=

∫ 2

0

2π
(
2x− x2

)
dx = 2π

(
2
x2

2
− x3

3

)∣∣∣∣2
0

= 2π

(
2

4

2
− 8

3

)
− 2π

(
2

0

2
− 0

3

)
= 2π · 4

3
− 2π · 0 =

8

3
π �
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Quiz #10 Wednesday, 16 June, 2010. [10 minutes]

1. Compute

∫ e

1

(ln(x))
2
dx. [10]

Solution. We will use integration by parts with u = (ln(x))
2

and v′ = 1, so u′ = 2ln(x)· 1x
and v = x. Then:∫ e

1

(ln(x))
2
dx =

∫ e

1

u · v′ dx = u · v|e1 −
∫ e

1

v · u′ dx

= (ln(x))
2 · x

∣∣∣e
1
−
∫ e

1

x · 2ln(x) · 1

x
dx

=
[
(ln(e))

2 · e− (ln(1))
2 · 1

]
− 2

∫ e

1

ln(x) dx

To solve the remaining integral we use parts again, with

s = ln(x) and t′ = 1, so s′ =
1

x
and t = x.

=
[
12 · e− 02 · 1

]
− 2

[
ln(x) · x|e1 −

∫ e

1

x · 1

x
dx

]
= e− 2

[
(ln(e) · e− ln(1) · 1)−

∫ e

1

1 dx

]
= e− 2 [(1 · e− 0 · 1)− x|e1]

= e− 2 [e− (e− 1)]

= e− 2 �

Quiz #11 Monday, 21 June, 2010. [12 minutes]

Compute each of the following integrals:

1.

∫ π/2

0

cos3(x) sin2(x) dx [5] 2.

∫
sec3(x) dx [5]

Solution to 1.∫ π/2

0

cos3(x) sin2(x) dx =

∫ π/2

0

cos2(x) sin2(x) cos(x) dx

=

∫ π/2

0

(
1− sin2(x)

)
sin2(x) cos(x) dx

=

∫ π/2

0

(
sin2(x)− sin4(x)

)
cos(x) dx =

∫ 1

0

(
u2 − u4

)
du

Using the substitution u = sin(x), so

du = cos(x) dx, and
x 0 π/2
u 0 1

.

=

(
1

3
u3 − 1

5
u5
)∣∣∣∣1

0

=

(
1

3
13 − 1

5
15
)
−
(

1

3
03 − 1

5
05
)

=
1

3
− 1

5
=

2

15
�
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Solution i to 2. We’ll use the reduction formula for
∫

secn(x) dx,∫
sec3(x) dx =

1

3− 1
sec3−2(x) tan(x) +

3− 2

3− 1

∫
sec3−2(x) dx

=
1

2
sec(x) tan(x) +

1

2

∫
sec(x) dx

=
1

2
sec(x) tan(x) +

1

2
ln (sec(x) + tanx) + C ,

as well as having memorized a certain notoriously nasty anti-derivative. �

Solution ii to 2. We’ll use integration by parts, with

u = sec(x) v′ = sec2(x)
u′ = sec(x) tan(x) v = tan(x)

rather than apply the reduction formula, and also do a certain notoriously nasty anti-
derivative from scratch.∫

sec3(x) dx = sec(x) tan(x)−
∫

tan(x) sec(x) tan(x) dx

= sec(x) tan(x)−
∫

sec(x) tan2(x) dx

= sec(x) tan(x)−
∫

sec(x)
(
sec2(x)− 1

)
dx

= sec(x) tan(x)−
∫ (

sec3(x)− sec(x)
)
dx

= sec(x) tan(x)−
∫

sec3(x) dx+

∫
sec(x) dx

Moving all copies of
∫

sec3(x) dx to the left in this equation gives

2

∫
sec3(x) dx = sec(x) tan(x) +

∫
sec(x) dx ,

so ∫
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2

∫
sec(x) dx .

We still need to compute
∫

sec(x) dx:∫
sec(x) dx =

∫
sec(x) · sec(x) + tan(x)

sec(x) + tan(x)
dx =

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx

We now use the substitution u = sec(x) + tan(x), so

du =
(
sec(x) tan(x) + sec2(x)

)
dx.

=

∫
1

u
du = ln(u) + C = ln (sec(x) + tan(x)) + C

Hence ∫
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2
ln (sec(x) + tan(x)) + C .

Whew! �
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Quiz #12 Wednesday, 23 June, 2010. [15 minutes]

Compute each of the following integrals:

1.

∫
1√

4− x2
dx [5] 2.

∫ 2

1

x
√
x2 − 1 dx [5]

Solution to 1. Since we see see an expression of the form 1√
4−x2

, we will use the trig

substitution x = 2 sin(θ), so dx = 2 cos(θ) dθ and θ = arcsin
(
x
2

)
.∫

1√
4− x2

dx =

∫
1√

4− 4 sin2(θ)
2 cos(θ) dθ =

∫
2 cos(θ)√
4 cos2(θ)

dθ

=

∫
2 cos(θ)

2 cos(θ)
dθ =

∫
1 dθ = θ + C = arcsin

(x
2

)
+ C �

Solution i to 2. [The hard way.] Since we see an expression of the form
√
x2 − 1, we

will use the trig substitution x = sec(θ), so dx = sec(θ) tan(θ) dθ and
x 1 2
θ 0 π

3

. (Recall

that cos(0) = 1, so sec(0) = 1, and cos
(
π
3

)
= 1

2 , so sec
(
π
3

)
= 2.)∫ 2

1

x
√
x2 − 1 dx =

∫ π/3

0

sec(θ)
√

sec2(θ)− 1 sec(θ) tan(θ) dθ

=

∫ π/3

0

sec(θ)
√

tan2(θ) sec(θ) tan(θ) dθ

=

∫ π/3

0

sec(θ) tan(θ) sec(θ) tan(θ) dθ

=

∫ π/3

0

tan2(θ) sec2(θ) dθ =

∫ √3

0

u2 du

Using the substitution u = tan(θ),

so du = sec2(θ) dθ and
θ 0 π/3

u 0
√

3
.

=
1

3
u3
∣∣∣∣
√
3

0

=
1

3

(√
3
)3
− 1

3
03 =

1

3
3
√

3− 0 =
√

3 �

Solution ii to 2. [The easier way.] Note that the derivative of w = x2 − 1 is dw
dx = 2x

and that we have an x outside the square root. We will therefore use the substitution

w = x2 − 1, so dw = 2x dx and
x 1 2
w 0 3

. Note that 1
2dw = x dx.

∫ 2

1

x
√
x2 − 1 dx =

∫ 3

0

√
w

1

2
dw =

1

2

∫ 3

0

w1/2 dw =
1

2
· w

3/2

3/2

∣∣∣∣3
0

=
1

3
w3/2

∣∣∣∣3
0

=
1

3

(√
3
)3
− 1

3
03 =

1

3
3
√

3− 0 =
√

3 �
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Quiz #13 Monday, 28 June, 2010. [12 minutes]

1. Compute

∫
2x2 + 3

(x2 + 4) (x− 1)
dx

Solution. This is a job for partial fractions. Note that the polynomial in the numerator
has lower degree than the polynomial in the denominator, and that the latter is already
factored into an irreducible quadratic (as x2 + 4 > 0 for all x) and a linear term.

First, we rewrite the rational function using partial fractions:

2x2 + 3

(x2 + 4) (x− 1)
=
Ax+B

x2 + 4
+

C

x− 1

=
(Ax+B)(x− 1) + C

(
x2 + 4

)
(x2 + 4) (x− 1)

=
Ax2 −Ax+Bx−B + Cx2 + 4C

(x2 + 4) (x− 1)

=
(A+ C)x2 + (B −A)x+ (4C −B)

(x2 + 4) (x− 1)

Comparing the coefficients in the numerators at the beginning and the end gives us a
system of linear equations,

A + C = 2
− A + B = 0

− B + 4C = 3 ,

which we solve. From the second equation, we know that A = B. Substituting this in
gives us a system of two equations:

A + C = 2
− A + 4C = 3

If we add these two, A disappears and we are left with 5C = 5, so C = 1. Substituting
this into A+ C = 2 gives us A = 1, and since A = B, it follows also that B = 1. Thus

2x2 + 3

(x2 + 4) (x− 1)
=

x+ 1

x2 + 4
+

1

x− 1
.

Second, we split the integral up accordingly,

2x2 + 3

(x2 + 4) (x− 1)
dx =

∫
x+ 1

x2 + 4
dx+

∫
1

x− 1
dx

=

∫
x

x2 + 4
dx+

∫
1

x2 + 4
dx+

∫
1

x− 1
dx ,

and work on the pieces.

12



For

∫
x

x2 + 4
dx we use the substitution u = x2 + 4, so du = 2x dx and x dx = 1

2 du.

Then ∫
x

x2 + 4
dx =

∫
1

u
· 1

2
du =

1

2
ln(u) +K =

1

2
ln
(
x2 + 4

)
+K ,

where K is the generic constant.

For

∫
1

x2 + 4
dx we use the trig substitution x = 2 tan(θ), so dx = 2 sec2(θ) dθ and

θ = arctan
(
x
2

)
. Then, using the identity 1 + tan2(θ) = sec2(θ) at the key step,∫

1

x2 + 4
dx =

∫
1

4 tan2(θ) + 4
· 2 sec2(θ) dθ =

2

4

∫
sec2(θ)

sec2(θ)
dθ

=
1

2

∫
1 dθ =

1

2
θ + L =

1

2
arctan

(x
2

)
+ L ,

where L is the generic constant.

For

∫
1

x− 1
dx we use the subsitution w = x− 1, so dw = dx. Then

∫
1

x− 1
dx =

∫
1

w
dw = ln(w) +M = ln(x− 1) +M ,

where M is the generic constant.
It follows that∫

2x2 + 3

(x2 + 4) (x− 1)
dx =

∫
x

x2 + 4
dx+

∫
1

x2 + 4
dx+

∫
1

x− 1
dx

=
1

2
ln
(
x2 + 4

)
+

1

2
arctan

(x
2

)
+ ln(x− 1) +N ,

where N = K + L+M is the combined generic constant. �
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Quiz #14 Wednesday, 30 June, 2010. [10 minutes]

1. Compute

∫ ∞
0

1

x2 + 1
dx. [10]

Solution. This is obviously an improper integral, so we need to take a limit:∫ ∞
0

1

x2 + 1
dx = lim

t→∞

∫ t

0

1

x2 + 1
dx

Using the trig substitution x = tan(θ), so that

dx = sec2(θ) dθ, and keeping the limits for x gives:

= lim
t→∞

∫ x=t

x=0

1

tan2(θ) + 1
sec2(θ) dθ

Using the identity tan2(θ) + 1 = sec2(θ) gives:

= lim
t→∞

∫ x=t

x=0

1

sec2(θ)
sec2(θ) dθ

= lim
t→∞

∫ x=t

x=0

1 dθ = lim
t→∞

θ|x=tx=0

Substituting back:

= lim
t→∞

arctan(x)|x=tx=0

= lim
t→∞

(arctan(t)− arctan(0))

Since tan(0) = 0 we also have arctan(0) = 0.

= lim
t→∞

arctan(t) =
π

2

Since tan(θ) has a vertical asymptote at
π

2
. �

Quiz #15 Monday, 5 July, 2010. [10 minutes]

1. Compute the arc-length of the curve y =
2

3
x3/2, where 0 ≤ x ≤ 1.

Solution. First,
dy

dx
=

2

3
· 3

2
x1/2 = x1/2. Plugging this into the arc-length formula gives:

Arc-length =

∫ 1

0

√
1 +

(
dy

dx

)2

dx =

∫ 1

0

√
1 +

(
x1/2

)2
dx =

∫ 1

0

√
1 + x dx

Substitute u = x+ 1, so du = dx and
x 0 1
u 1 2

.

=

∫ 2

1

√
u du =

∫ 2

1

u1/2 du =
u3/2

3/2

∣∣∣∣2
1

=
2

3
23/2 − 2

3
13/2

=
2

3
2
√

2− 2

3
1 =

2

3

(
2
√

2− 1
)

�
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Quiz #16 Wednesday, 7 July, 2010. [15 minutes]

1. Find the arc-length of the parametric curve x = t cos(t) and y = t sin(t), where
0 ≤ t ≤ 1. [10]

Solution. First, using the Chain Rule, we compute

dx

dt
= 1 · cos(t) + t · (− sin(t)) = cos(t)− t sin(t) and

dy

dt
= 1 · sin(t) + t · sin(t) = sin(t) + t cos(t) .

Second, we plug this into the arc-length formula for parametric curves:

Arc-length =

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ 1

0

√
(cos(t)− t sin(t))

2
+ (sin(t) + t cos(t))

2
dt

=

∫ 1

0

√
cos2(t)− 2t cos(t) sin(t) + t2 sin2(t)

+ sin2(t) + 2t cos(t) sin(t) + t2 cos2(t)
dt

=

∫ 1

0

√(
cos2(t) + sin2(t)

)
(1 + t2) dt =

∫ 1

0

√
1 + t2 dt

Substitute t = tan(θ), so dt = sec2(θ) dθ

and
t 0 1
θ 0 π/4

.

=

∫ π/4

0

√
1 + tan2(θ) sec2(θ) dθ

=

∫ π/4

0

√
sec2(θ) sec2(θ) dθ =

∫ π/4

0

sec3(θ) dθ

This can be done by parts, or looking it up,

or even doing Quiz #11 over again. :-)

=

[
1

2
tan(θ) sec(θ)− 1

2
ln (tan(θ) + sec(θ))

]∣∣∣∣π/4
0

Recall that tan(π/4) = 1 and sec(π/4) =
√

2,

while tan(0) = 0 and sec(0) = 1, and ln(1) = 0.

=

[
1

2
1
√

2− 1

2
ln
(

1 +
√

2
)]
−
[

1

2
0 · 1− 1

2
ln (0 + 1)

]
=

1

2

√
2− 1

2
ln
(

1 +
√

2
)

�
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Quiz #17 Monday, 12 July, 2010. [15 minutes]

1. Sketch the curve given by r = sin(θ), 0 ≤ θ ≤ π, in polar coordinates. [2]

2. Sketch the curve given by r = sin(θ), π ≤ θ ≤ 2π, in polar coordinates. [2]

3. Find the area of the region enclosed by the curve given by r = sin(θ), 0 ≤ θ ≤ π, in
polar coordinates. [6]

Bonus: Find an equation in Cartesian coordinates for the curve given by r = sin(θ),
0 ≤ θ ≤ π, in polar coordinates. [2]

Solution to 1. Note that as θ changes from 0 to π, r increases from 0 to 1 (at θ = π/2),
and then decreases to 0 again. See Figure 1 below. �

Solution to 2. Note that as θ changes from π to 2π, r decreases from 0 to −1 (at
θ = π/2), and then increases to 0 again. Recall that a negative r is interpreted as being
|r| units from the origin in the opposite direction. See Figure 2 above. �

Solution to 3. We plug r = sin(θ) into the area formula for polar coordinates and chug
away:∫ π

0

1

2
r2 dθ =

1

2

∫ π

0

sin2(θ) dθ =
1

2

∫ π

0

1− cos(2θ)

2
dθ =

1

4

∫ π

0

(1− cos(2θ)) dθ

=
1

4

(
θ − 1

2
sin(2θ)

)∣∣∣∣π
0

=
1

4

(
π − 1

2
sin(2π)

)
− 1

4

(
0− 1

2
sin(2 · 0)

)
=

1

4
(π − 0)− 1

4
(0− 0) =

π

4
�

Solution to the Bonus. Observe that for this curve x = r cos(θ) = sin(θ) cos(θ) =
1
2 sin(2θ) and y = r sin(θ) = sin(θ) sin(θ) = sin2(θ) = 1

2 −
1
2 cos(2θ), so

x2 +

(
y − 1

2

)2

=

(
1

2
sin(2θ)

)2

+

(
1

2
− 1

2
cos(2θ)− 1

2

)2

=
1

4
sin2(2θ) +

1

4
cos2(2θ) =

1

4
.

That is, the curve is a circle of radius 1
2 and centre

(
0, 12
)
, which is compatible with the

sketch in Figure 1 above. �
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Quiz #18 Wednesday, 14 July, 2010. [12 minutes]

1. Use the definition of convergence of a series to compute
∞∑
n=1

1

n(n+ 1)
. [10]

Hint: Note that
1

k(k + 1)
=

1

k
− 1

k + 1
.

Solution. By definition,
∞∑
n=1

1

n(n+ 1)
converges to a number L if the partial sums Sn =

n∑
i=1

1

i(i+ 1)
have a limit of L as n→∞. We check to see what happens when we take the

limit of the partial sums:

lim
n→∞

Sn = lim
n→∞

n∑
i=1

1

i(i+ 1)

= lim
n→∞

(
1

1(1 + 1)
+

1

2(2 + 1)
+

1

3(3 + 1)
+ · · ·+ 1

(n− 1)n
+

1

n(n+ 1)

)
= lim
n→∞

(
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

(n− 1)n
+

1

n(n+ 1)

)
(Now the hint comes in at last!)

= lim
n→∞

([
1

1
− 1

2

]
+

[
1

2
− 1

3

]
+ · · ·+

[
1

n− 1
− 1

n

]
+

[
1

n
− 1

n+ 1

])
= lim
n→∞

(
1

1
+

[
−1

2
+

1

2

]
+

[
−1

3
+ · · ·+ 1

n− 1

]
+

[
− 1

n
+

1

n

]
− 1

n+ 1

)
= lim
n→∞

(
1

1
− 1

n+ 1

)
= 1− 0 = 1 since

1

n+ 1
→ 0 as n→∞.

It follows that
∞∑
n=1

1

n(n+ 1)
converges and = 1. �

Quiz #19 Monday, 19 July, 2010. [10 minutes]

1. Determine whether the series
∞∑
n=0

1

n2 + 1
converges or diverges. [10]

Solution. Observe that
1

n2 + 1
is a ratio of polynomials in n with the degree of the

denominator being 2 = 2 − 0 more than the degree of the numerator. Since 2 > 1, it
follows by the Generalized p-Test that the series converges. �

Note: This series can also be shown to converge by using the Integral Test or the Com-
parison Test (or one of its several variants and extensions).
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Quiz #20 Wednesday, 14 July, 2010. [12 minutes]

1. Determine whether the series
∞∑
n=0

cos(nπ)

1 + n
converges conditionally, converges abso-

lutely, or diverges. [10]

Solution. This series converges conditionally. To see that it does converge, we apply the
Alternating Series Test.

Zeroth, observe that cos(0) = 1, cos(π) = −1, cos(2π) = 1, cos(3π) = −1, and so on.
In general, cos(nπ) = (−1)n.

First, note that the series survives the Divergence Test:

lim
n→∞

∣∣∣∣cos(nπ)

1 + n

∣∣∣∣ = lim
n→∞

|(−1)n|
1 + n

= lim
n→∞

1

1 + n
= 0 ,

since 1 + n→∞ as n→∞.
Second, since n+ 2 > n+ 1 for n ≥ 0,∣∣∣∣cos(nπ)

1 + n

∣∣∣∣ =
1

n+ 1
>

1

n+ 2
=

∣∣∣∣cos ((n+ 1)π))

1 + n

∣∣∣∣ ,
so the terms of the series are decreasing in absolute value.

Third, since cos(nπ) = (−1)n and since 1
1+n > 0 when n ≥ 0, it follows that cos(nπ)

1+n

alternates sign as n increases, i.e.

∞∑
n=0

cos(nπ)

1 + n
is an alternating series.

It follows that

∞∑
n=0

cos(nπ)

1 + n
converges by the Alternating Series Test. To see that

it does not converge absolutely, consider the corresponding series of absolute values,
∞∑
n=0

∣∣∣∣cos(nπ)

1 + n

∣∣∣∣ =
∞∑
n=0

1

1 + n
. Since

1

1 + n
is a ratio of polynomials in n with the degree

of the denominator being 1 = 1− 0 more than the degree of the numerator. Since 1 ≤ 1,
it follows by the Generalized p-Test that the series of absolute values diverges.

Thus

∞∑
n=0

cos(nπ)

1 + n
converges conditionally. �
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Quiz #21 Monday, 26 July, 2010. [15 minutes]

1. Find the radius and interval of convergence of the power series
∞∑
n=0

n3n

2n+1
xn. [10]

Solution. We will use the Ratio Test to find the radius of convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)3n+1

2n+2 xn+1

n3n

2n+1xn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)3n+12n+1xn+1

n3n2n+2xn

∣∣∣∣
= lim
n→∞

∣∣∣∣3(n+ 1)x

2n

∣∣∣∣ =
3|x|

2
lim
n→∞

n+ 1

n

=
3|x|

2
lim
n→∞

(
1 +

1

n

)
=

3|x|
2

(1 + 0) =
3|x|

2

It follows by the Ratio Test that
∞∑
n=0

n3n

2n+1
xn converges absolutely when

3|x|
2

< 1, i.e. when

|x| < 2

3
, and diverges when

3|x|
2

> 1, i.e. when |x| > 2

3
. Thus the radius of convergence

of the series is R =
2

3
.

As R < ∞, we need to determine whether the series converges at x = ±R = ± 2
3 to

find the interval of convergence. That is, we need to determine whether the series

∞∑
n=0

n3n

2n+1

(
−2

3

)n
=

∞∑
n=0

(−1)n
n

2
and

∞∑
n=0

n3n

2n+1

(
2

3

)n
=

∞∑
n=0

n

2

converge or diverge. Since

lim
n→∞

∣∣∣(−1)n
n

2

∣∣∣
lim
n→∞

n

2

 =
1

2
lim
n→∞

n =∞ 6= 0 ,

both of these series diverge by the Divergence Test. Thus the interval of convergence of
the given series is

(
− 2

3 ,
2
3

)
. �
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Quiz #22 Wednesday, 28 July, 2010. [15 minutes]

1. Find the Taylor series of f(x) = ln(x) at a = 1. [10]

Solution i. (Using Taylor’s formula.) We take the successive derivatives of f(x) = ln(x)
and evaluate them at a = 1:

n f (n)(x) f (n)(1)
0 ln(x) 0
1 x−1 1
2 −x−2 −1
3 2x−3 2
4 −6x−4 −6
5 24x−5 24
...

...
...

In general, when n ≥ 1, we have f (n)(x) = (−1)n−1(n − 1)!x−n and so f (n)(1) =
(−1)n−1(n− 1)!. Note that f (0)(1) = ln(1) = 0.

It follows that the Taylor series of f(x) = ln(x) at a = 1 is

∞∑
n=1

f (n)(1)

n!
(x− 1)n =

∞∑
n=1

(−1)n−1(n− 1)!

n!
(x− 1)n =

∞∑
n=1

(−1)n−1

n
(x− 1)n

= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · . �

Solution ii. (Using underhanded cunning.) Observe that
d

dx
ln(x) =

1

x
=

1

1− (1− x)
.

Using the formula for the sum of a geometric series, we get:

1

x
=

1

1− (1− x)
= 1 + (1− x) + (1− x)2 + (1− x)3 + · · ·

= 1− (x− 1) + (x− 1)2 − (x− 3)3 + · · · =
∞∑
k=0

(−1)k(x− 1)k

By the uniqueness of Taylor series, this must be the Taylor series at a = 1 of
1

x
=

d

dx
ln(x).

Integrating this series term-by-term gives the Taylor series at a = 0 of ln(x), at least up
to a constant:

∞∑
k=0

∫
(−1)k(x− 1)k dx = C +

∞∑
k=0

(−1)k(x− 1)k+1

k + 1

= C + (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
− · · ·

Since this series should equal ln(1) = 0 when x = 1, we must have C = 0.

Thus the Taylor series of f(x) = ln(x) at a = 1 is
∞∑
n=1

(−1)n−1

n
(x− 1)n. (Here we’ve

changed indices, with n = k + 1, to make it look like the previous solution.) �
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