
Mathematics 1100Y – Calculus I: Calculus of one variable
Trent University, Summer 2010

Solutions to the Final Examination

Part I. Do all three (3) of 1–3.

1. Compute
dy

dx
as best you can in any three (3) of a–f. [15 = 3 × 5 each]

a. x2 + 3xy + y2 = 23 b. y = ln (tan(x)) c. y =

∫ 3

x

ln (tan(t)) dt

d. y =
ex

ex − e−x
e.

x = cos(2t)
y = sin(3t)

f. y = (x+ 2)ex

Solutions to 1. Using various tricks!

a. Implicit differentiation and some algebra:

x2 + 3xy + y2 = 23 =⇒ d

dx

(
x2 + 3xy + y2

)
=

d

dx
23

=⇒ 2x+ 3y + 3x
dy

dx
+ 2y

dy

dx
= 0

=⇒ (2x+ 3y) + (3x+ 2y)
dy

dx
= 0

=⇒ dy

dx
= −2x+ 3y

3x+ 2y
�

b. Chain Rule:

dy

dx
=

d

dx
ln (tan(x)) =

1

tan(x)
· d
dx

tan(x) = cot(x) sec2(x) �

c. The Fundamental Theorem of Calculus:

dy

dx
=

d

dx

∫ 3

x

ln (tan(t)) dt =
d

dx
(−1)

∫ x

3

ln (tan(t)) dt = −ln (tan(x)) �

d. Quotient Rule and some algebra with ex:

dy

dx
=

d

dx

(
ex

ex − e−x

)
=

(
d
dxe

x
)

(ex − e−x)− ex d
dx (ex − e−x)

(ex − e−x)
2

=
ex (ex − e−x)− ex (ex + e−x)

(ex − e−x)
2 =

e2x − e0 − e2x − e0

(ex − e−x)
2

=
−2

(ex − e−x)
2 Note that

d

dx
e−x = −e−x. �
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e. As usual with parametric functions:

dy

dx
=

dy
dt
dx
dt

=
d
dt cos(2t)
d
dt sin(3t)

=
sin(2t) · (−2)

cos(3t) · 3
= − 2 sin(2t)

3 cos(3t)

. . . and there’s not much one can try to do to simplify this that doesn’t make it worse. �

f. Product Rule:

dy

dx
=

d

dx
((x+ 2)ex) =

(
d

dx
(x+ 2)

)
·ex+(x+2) · d

dx
ex = 1ex+(x+2)ex = (x+3)ex �

2. Evaluate any three (3) of the integrals a–f. [15 = 3 × 5 each]

a.

∫ π/4

−π/4
tan(x) dx b.

∫
1

t2 − 1
dt c.

∫ π

0

x cos(x) dx

d.

∫ √
w2 + 9 dw e.

∫ e

1

ln(x) dx f.

∫
ex

e2x + 2ex + 1
dx

Solutions to 2. Using various tricks!

a. We’ll write tan(x) =
sin(x)

cos(x)
and take it from there.∫ π/4

−π/4
tan(x) dx =

∫ π/4

−π/4

sin(x)

cos(x)
dx

Substitute u = cos(x), so du = − sin(x) dx and

(−1) du = sin(x) dx. Also,
x −π/4 π/4

u 1/
√

2 1/
√

2
.

=

∫ 1/
√
2

1/
√
2

−1

u
du = 0 �

b. This one can be done with the trig substitution t = tan(θ), but that approach requires
integrating csc(θ) along the way. We will use partial fractions instead. Note first that
t2 − 1 = (t− 1)(t+ 1). Then

1

t2 − 1
=

A

t− 1
+

B

t+ 1
,

which requires that 1 = A(t + 1) + B(t − 1) = (A + B)t + (A − B), i.e. A + B = 0 and
A−B = 1. Adding the last two equations gives 2A = 1, so A = 1

2 , and substituting back
into either equation and solving for B gives B = − 1

2 . Hence∫
1

t2 − 1
dt =

∫ (
1/2

t− 1
− 1/2

t+ 1

)
dt

=
1

2

∫
1

t− 1
dt− 1

2

∫
1

t+ 1
dt

=
1

2
ln(t− 1)− 1

2
ln(t+ 1) + C =

1

2
ln

(
t− 1

t+ 1

)
+ C . �
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c. This is a job for integration by parts. We’ll use u = x and v′ = cos(x), so u′ = 1 and
v = sin(x). Thus∫ π

0

x cos(x) dx =

∫ π

0

uv′ dx = uv|π0 −
∫ π

0

u′v dx

= x sin(x)|π0 −
∫ π

0

sin(x) dx

= π sin(π)− 0 sin(0)− (− cos(x))|π0
= π · 0− 0 · 0 + cos(π)− cos(0) = 0− 0− 1− 1 = −2 . �

d. This is a job for a trig substitution, namely w = 3 tan(θ), so dw = 3 sec2(θ) dθ.∫ √
w2 + 9 dw =

∫ √
9 tan2(θ) + 9 · 3 sec2(θ) dθ

=

∫
3
√

tan2(θ) + 1 · 3 sec2(θ) dθ

= 9

∫ √
sec2(θ) · sec2(θ) dθ = 9

∫
sec3(θ) dθ

This last we look up rather than do it from scratch . . .

=
9

2
sec(θ) tan(θ) +

9

2
ln (sec(θ) + tan(θ)) + C

= Substituting back, tan(θ) =
w

3
and sec(θ) =

√
1 +

w2

9
.

=
9

2
· w

3

√
1 +

w2

9
+

9

2
ln

(
w

3
+

√
1 +

w2

9

)
+ C

=
3w

2

√
1 +

w2

9
+

9

2
ln

(
w

3
+

√
1 +

w2

9

)
+ C �

e. Integration by parts again, with u = ln(x) and v′ = 1, so u′ =
1

x
and v = x.

∫ e

1

ln(x) dx =

∫ e

1

uv′ dx = uv|e1 −
∫ e

1

u′v dx

= xln(x)|e1 −
∫ e

1

1

x
· x dx

= eln(e)− 1ln(1)−
∫ e

1

1 dx

= e · 1− 1 · 0− x|e1
= e− (e− 1) = e− e+ 1 = 1 �
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f. Substitute u = ex, so du = ex dx and e2x = (ex)
2

= u2, and see what happens:∫
ex

e2x + 2ex + 1
dx =

∫
1

u2 + 2u+ 1
du =

∫
1

(u+ 1)2
du

Substitute again, with w = u+ 1 and dw = du.

=

∫
1

w2
dw =

−2

w3
+ C

Now we undo the substitutions.

= − 2

(u+ 1)3
+ C = − 2

(ex + 1)
3 + C �

3. Do any five (5) of a–i. [25 = 5 × 5 ea.]

a. Find the volume of the solid obtained by rotating the region bounded by y =
√
x,

0 ≤ x ≤ 4, the x-axis, and x = 4, about the x-axis.

Solution. Here’s a crude sketch of the solid:

We’ll use the disk/washer method. The disk at x has radius R =
√
x− 0 =

√
x; since

it is a disk rather than a washer, we need not worry about an inner radius. The the volume
of the solid is ∫ 4

0

πR2 dx =

∫ 4

0

π
(√
x
)2
dx = π

∫ 4

0

x dx

= π
x2

2

∣∣∣∣4
0

= π
42

2
− π 02

2
= 8π − 0π = 8π ,

cube units of whatever sort. �

b. Use the ε− δ definition of limits to verify that lim
x→1

3x = 3.

Solution. We need to show that for any ε > 0 there is a δ > 0 such that, for all x, if
|x− 1| < δ, then |3x− 3| < ε.
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Given an ε > 0, we obtain the required δ > 0 with some reverse-engineering:

|3x− 3| < ε ⇐⇒ |3(x− 1)| < ε ⇐⇒ |x− 1| < ε

3

Since each step is reversible, it follows that if we let δ = ε
3 , then |3x− 3| < ε.

c. Find the Taylor series of f(x) =
x2

1− x2
at a = 0 without taking any derivatives.

Solution. Recall that the formula for the sum of the geometric series
∞∑
n=0

arn with first

term s and common ratio r < 1 is
s

1− r
. If we set s = x2 and r = x2, it now follows that

x2

1− x2
=
∞∑
n=0

x2
(
x2
)n

=
∞∑
n=0

x2n+2 ,

at least when
∣∣x2∣∣ < 1, i.e. when |x| < 1. By the uniqueness of power series representations,

it follows that
∞∑
n=0

x2n+2 is the Taylor series at 0 of f(x) =
x2

1− x2
. �

d. Sketch the polar curve r = 1 + sin(θ) for 0 ≤ θ ≤ 2π.

Solution. The simplest way to do this is to compute some points on the curve and
connect up the dots.

θ 0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π

sin(θ) 0 1/2 1/
√
2

√
3/2 1

√
3/2 1/

√
2 1/2 0

r 1 3/2 1+1/
√
2 1+

√
3/2 2 1+

√
3/2 1+1/

√
2 3/2 1

7π/6 5π/4 4π/3 3π/2 5π/3 7π/4 11π/6 2π

−1/2 −1/
√
2 −

√
3/2 −1 −

√
3/2 −1/

√
2 −1/2 0

1/2 1−1/
√
2 1−

√
3/2 0 1−

√
3/2 1−1/

√
2 1/2 1

Here’s a rough sketch of the curve:

�
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e. Use the limit definition of the derivative to compute f ′(1) for f(x) = x2.

Solution. Here goes:

f ′(1) = lim
h→0

f(1 + h)− f(1)

h
= lim
h→0

(1 + h)2 − 12

h

= lim
h→0

1 + 2h+ h2 − 1

h
= lim
h→0

2h+ h2

h

= lim
h→0

(2 + h) = 2 �

f. Use the Right-hand Rule to compute the definite integral

∫ 2

1

x

2
dx.

Solution. We plug into the Right-hand Rule formula and chug away:∫ 2

1

x

2
dx = lim

n→∞

n∑
i=1

2− 1

n
·

1 + i 2−1n
2

= lim
n→∞

1

2n

n∑
i=1

(
1 +

i

n

)

= lim
n→∞

1

2n

[(
n∑
i=1

1

)
+

(
1

n

n∑
i=1

i

)]
= lim
n→∞

1

2n

[
n+

1

n
· n(n+ 1)

2

]
= lim
n→∞

[
1

2n
· n+

1

2n
· n+ 1

2

]
= lim
n→∞

[
1

2
+

1

4
+

1

4n

]
=

3

4
+ 0 =

3

4
�

g. Determine whether the series
∞∑
n=2

(−1)n

ln(n)
converges absolutely, converges condi-

tionally, or diverges.

Solution. The series converges by the Alternating Series Test: First,

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ = lim
n→∞

1

ln(n)
= 0 ,

since ln(n) → ∞ as n → ∞. Second, since ln(n) is an increasing function of n, we have
that

|an+1| =
∣∣∣∣ (−1)n+1

ln(n+ 1)

∣∣∣∣ =
1

ln(n+ 1)
<

1

ln(n)
=

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ = |an| .

Third, since ln(n) > 0 when n ≥ 2 and (−1)n alternates sign, this is an alternating series.
On the other hand, the Comparison Test shows the series does not converge absolutely.

Note that n > ln(n) for n ≥ 2, so

1

n
<

1

ln(n)
=

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ .
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Since the harmonic series

∞∑
n=2

1

n
diverges, it follows that the series

∞∑
n=2

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ diverges as

well. Thus the given series does not converge absolutely.

Since it converges, but not absolutely,

∞∑
n=2

(−1)n

ln(n)
converges conditionally. �

h. Find the radius of convergence of the power series
∞∑
n=0

n2

πn
xn.

Solution. We will use the Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
(n+1)2

πn+1 x
n+1

n2

πnxn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ (n+ 1)2

n2
· x
π

∣∣∣∣
=
|x|
π

lim
n→∞

n2 + 2n+ 1

n2
=
|x|
π

lim
n→∞

(
1 +

2

n
+

1

n2

)
=
|x|
π

(1 + 0 + 0) =
|x|
π

It follows by the Ratio Test that
∞∑
n=0

n2

πn
xn converges if

|x|
π
< 1, i.e. if |x| < π, and diverges

if
|x|
π
> 1, i.e. if |x| > π, so the radius of convergence of the series is R = π. �

i. Compute the arc-length of the polar curve r = θ, 0 ≤ θ ≤ 1.

Solution. We plug the given curve into the polar version of the arc-length formula and

chug away. Note that
dr

dθ
= 1 if r = θ.

Length =

∫ 1

0

√
r2 +

(
dr

dθ

)2

dθ =

∫ 1

0

√
θ2 + 12 dθ =

∫ 1

0

√
θ2 + 1 dθ

We use the trig substitution θ = tan(t),

so dθ = sec2(t) dt and
θ 0 1
t 0 π/4

=

∫ π/4

0

√
tan2(t) + 1 sec2(t) dt =

∫ π/4

0

√
sec2(t) sec2(t) dt =

∫ π/4

0

sec3(t) dt

As in the solution to 2d, we look this up.

=
1

2
sec(t) tan(t) +

1

2
ln (sec(t) + tan(t))

∣∣∣∣π/4
0

=
1

2
sec(π/4) tan(π/4) +

1

2
ln (sec(π/4) + tan(π/4))

− 1

2
sec(0) tan(0)− 1

2
ln (sec(0) + tan(0))

=
1

2
·
√

2 · 1 +
1

2
ln
(√

2 + 1
)
− 1

2
· 1 · 0− 1

2
ln (1 + 0) =

1√
2

+
1

2
ln
(√

2 + 1
)

�
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Part II. Do any two (2) of 4–6.

4. Find the domain, all maximum, minimum, and inflection points, and all vertical and

horizontal asymptotes of f(x) = e−x
2

, and sketch its graph. [15]

Solution. We’ll run through the usual checklist and then graph f(x) = e−x
2

.

i. Domain. Note that both g(x) = ex and h(x) = −x2 are defined and continuous for all

x. It follows that f(x) = g (h(x)) = e−x
2

is also defined and continuous for all x. It
follows that the domain of f(x) is all of R and that it has no vertical asymptotes. �

ii. Intercepts. Since g(x) = ex is never 0, f(x) = e−x
2

can never equal 0 either, so it has

no x-intercepts. For the y-intercept, simply note that f(0) = e−0
2

= e0 = 1. �

iii. Asymptotes. As noted above, f(x) = e−x
2

has no vertical asymptotes, so we only
need to check for horizontal asymptotes.

lim
x→∞

e−x
2

= lim
x→∞

1

ex2 = 0 and lim
x→−∞

e−x
2

= lim
x→−∞

1

ex2 = 0 ,

since ex
2 → ∞ as x2 → ∞, which happens as x → ±∞. Thus f(x) = e−x

2

has the
horizontal asymptote y = 0 in both directions. �

iv. Maxima and minima. f ′(x) = e−x
2 d

dx

(
−x2

)
= −2xe−x

2

, which equals 0 exactly

when x = 0 because −2e−x
2 6= 0 for all x. Note that this is the only critical point.

Since e−x
2

> 0 for all x, f ′(x) = −2xe−x
2

> 0 when x < 0 and < 0 when x > 0,

so f(x) = e−x
2

is increasing for x < 0 and decreasing for x > 0. Thus x = 0 is an
(absolute!) maximum point of f(x), which has no minimum points. �

v. Inflection points.

f ′′(x) =
d

dx

(
−2xe−x

2
)

= −2e−x
2

− 2x
d

dx

(
−x2

)
= −2e−x

2

− 2x ·
(
−2xe−x

2
)

=
(
4x2 − 2

)
e−x

2

,

which equals which equals 0 exactly when 4x2 − 2 = 0, i.e. when x = ± 1√
2
, because

−2e−x
2 6= 0 for all x. Since e−x

2

> 0 for all x, f ′′(x) =
(
4x2 − 2

)
e−x

2

> 0 exactly
when 4x2− 2 > 0, i.e. when |x| > 1√

2
, and is < 0 exactly when 4x2− 2 < 0, i.e. when

|x| < 1√
2
. Thus f(x) = e−x

2

is concave up on
(
−∞,− 1√

2

)
∪
(

1√
2
,∞
)

and concave

down on
(
− 1√

2
, 1√

2

)
. Thus f(x) = e−x

2

has two inflection points, at x = ± 1√
2
. �

v. Graph. f(x) = e−x
2

is essentially the classic “bell curve” without some small ad-
justments that are made to have the total area under the “bell curve” be equal to
1.
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This graph was generated with the command tt Plot2D(Exp(-xˆ2),-10:10) in Yacas

(“Yet Another Computer Algebra System”). �

That’s all for this one, folks! �

5. Find the area of the surface obtained by rotating the curve y = tan(x), 0 ≤ x ≤ π

4
,

about the x-axis. [15]

Solution. This is, quite unintentionally, by far the hardest problem on the exam. [I
hallucinated my way to a fairly simple “solution” when making up the exam, and the error
survived all my checks . . . ] Here’s a crude sketch of the surface:

Note that
dy

dx
=

d

dx
tan(x) = sec2(x). Plugging this into the appropriate surface area
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formula gives:

∫ π/4

0

2πy

√
1 +

(
dy

dx

)2

dx =

∫ π/4

0

2π tan(x)
√

1 + sec4(x) dx

Let u = sec2(x), so du = 2 sec( x) tan(x) dx and

2 tan(x) dx =
1

sec2(x)
du =

1

u
du; also

x 0 π/4
u 1 2

.

= π

∫ 2

1

√
1 + u2 · 1

u
du = π

∫ 2

1

1

u

√
1 + u2 du

Now let u = tan(θ), so du = sec2(θ) dθ and

u 1 2
θ π/4 arctan(2)

.

=

∫ arctan(2)

π/4

1

tan(θ)

√
1 + tan2(θ) sec2(θ) dθ

=

∫ arctan(2)

π/4

sec3(θ)

tan(θ)
dθ =

∫ arctan(2)

π/4

1

sin(θ) cos2(θ)
dθ

At this point – if they even got this far – most people would get stuck. We have

one last desperate option, though, namely the Weierstrauss substitution: t = tan

(
θ

2

)
,

so cos(θ) =
1− t2

1 + t2
, sin(θ) =

2t

1 + t2
, and dθ =

2

1 + t2
dt. The limits get pretty ugly here,

though:
θ π/4 arctan(2)
t tan(π/8) tan (arctan(2)/2)

. [There may be some way to simplify the limits,

but by now I can’t be bothered . . . ] Resuming integration:

∫ π/4

0

2πy

√
1 +

(
dy

dx

)2

dx =

∫ arctan(2)

π/4

1

sin(θ) cos2(θ)
dθ

=

∫ tan(arctan(2)/2)

tan(π/8)

1 + t2

2t
·
(

1 + t2

1− t2

)2

· 2

1 + t2
dt

After some algebra, which I’ll let you do, we get

=

∫ tan(arctan(2)/2)

tan(π/8)

t4 + 2t2 + 1

t(t− 1)2(t+ 1)2
dt

. . . which we can do using partial fractions.

10



To continue we need to find the constants A–E such that

t4 + 2t2 + 1

t(t− 1)2(t+ 1)2
=
A

t
+

B

(t− 1)2
+

C

t− 1
+

D

(t+ 1)2
+

E

t+ 1

=

A(t− 1)2(t+ 1)2 +Bt(t+ 1)2

+ Ct(t− 1)(t+ 1)2 +Dt(t− 1)2

+ Et(t− 1)2(t+ 1)

t(t− 1)2(t+ 1)2

=

(A+ C + E)t4 + (B + C +D − E)t3

+ (−2A+ 2B − C − 2D − E)t2

+ (B − C +D + E)t+A

t(t− 1)2(t+ 1)2
,

that is, satisfying the system of linear equations:

A + C + E = 1
B + C + D − E = 0

− 2A + 2B − C − 2D − E = 2
B − C + D + E = 0

A = 1

Solving this [more work for you!] gives us: A = 1, B = 1, C = 0, D = −1, and E = 0.
Resuming integration again [and leaving some more routine work for you]:

∫ π/4

0

2πy

√
1 +

(
dy

dx

)2

dx =

∫ tan(arctan(2)/2)

tan(π/8)

t4 + 2t2 + 1

t(t− 1)2(t+ 1)2
dt

=

∫ tan(arctan(2)/2)

tan(π/8)

(
1

t
+

1

(t− 1)2
− 1

(t+ 1)2

)
dt

=

(
ln(t)− 1

t− 1
+

1

t+ 1

)∣∣∣∣tan(arctan(2)/2)
tan(π/8)

=

(
ln (tan (arctan(2)/2))− 1

tan (arctan(2)/2)− 1

+
1

tan (arctan(2)/2) + 1

)
−
(

ln (tan(π/8))− 1

tan(π/8)− 1
+

1

tan(π/8) + 1

)
Simplify if you can — and dare! �

6. Find the volume of the solid obtained by rotating the region below y = 1 − x2,
−1 ≤ x ≤ 1, and above the x-axis about the line x = 2. [15]
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Solution. Here’s a crude sketch of the solid:

We will use the method of cylindrical shells to find the volume of this solid. Note that
the shell at x, where −1 ≤ x ≤ 1, has radius r = 2 − x and height h = y − 0 = 1 − x2.
Plugging this into the formula for the volume gives:

∫ 1

−1
2πrh dx =

∫ 1

−1
2π(2− x)

(
1− x2

)
dx

= 2π

∫ 1

−1

(
2− x− 2x2 + x3

)
dx

= 2π

(
2x− 1

2
x2 − 2

3
x3 +

1

4
x4
)∣∣∣∣1
−1

= 2π

(
2− 1

2
− 2

3
+

1

4

)
− 2π

(
−2− 1

2
+

2

3
+

1

4

)
= 2π · 13

12
− 2π · −19

12
= 2π · 32

12
=

16

3
π �

Part III. Do one (1) of 7 or 8.

7. Do all three (3) of a–c.

a. Use Taylor’s formula to find the Taylor series of ex centred at a = −1. [7]

Solution. If f(x) = ex, then f ′(x) = ex, f ′′(x) − ex, and so on; it is pretty easy to see

that f (n)(x) = ex for all n ≥ 0. It follows that f (n)(−1) = e−1 =
1

e
for all n ≥ 0. Hence

the Taylor series of ex centred at a = −1 is:

∞∑
n=0

f (n)(−1)

n!
(x− (−1))

n
=
∞∑
n=0

e−1

n!
(x+ 1)n =

∞∑
n=0

1

n!e
(x+ 1)n �

b. Determine the radius and interval of convergence of this Taylor series. [4]

12



Solution. We’ll use the Ratio Test:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣
1

(n+1)!e (x+ 1)n+1

1
n!e (x+ 1)n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

n+ 1
(x+ 1)

∣∣∣∣
= |x+ 1| lim

n→∞

1

n+ 1
= |x+ 1| · 0 = 0

It follows that the series converges for any x whatsoever, i.e. it has radius of convergence
R =∞ and hence has interval of convergence (−∞,∞). �

c. Find the Taylor series of ex centred at a = −1 using the fact that the Taylor

series of ex centred at 0 is

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+
x4

24
+ · · · . [4]

Solution. We plug x− (−1) = x+ 1 in for x in ex and in its Taylor series:

ex+1 =
∞∑
n=0

(x+ 1)n

n!

Since ex+1 = exe, it follows that

ex =
1

e

∞∑
n=0

(x+ 1)n

n!
=

∞∑
n=0

(x+ 1)n

n!e
.

Since Taylor series are unique this must be the Taylor series of ex centred at a = −1. �

8. Do all three (3) of a–c. You may assume that the Taylor series of f(x) = ln(1 + x)

centred at a = 0 is

∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+ · · · .

a. Find the radius and interval of convergence of this Taylor series. [6]

Solution. We’ll use the Ratio Test to find the radius of convergence.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n+2

n+1 xn+1

(−1)n+1

n xn

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣− n

n+ 1
x

∣∣∣∣
= |x| lim

n→∞

n

n+ 1
= |x| lim

n→∞

n/n

(n+ 1)/n

= |x| lim
n→∞

1

1 + 1/n
= |x| · 1

1 + 0
= |x| · 1 = |x|

It follows by the Ratio Test that the given Taylor series converges absolutely when |x| < 1
and diverges when |x| > 1, so the radius of convergence is R = 1.
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To determine the interval of convergence, we need to check what happens at x =
±R = ±1. Plugging in x = −1, the series becomes

∞∑
n=1

(−1)n+1

n
(−1)n =

∞∑
n=1

−1

n
= −

∞∑
n=1

1

n

(i.e. the negative of the harmonic series), which diverges by the p-Test. Plugging in x = 1,
the series becomes

∞∑
n=1

(−1)n+1

n
1n =

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

(i.e. the alternating harmonic series), which converges by the Alternating Series Test, as
we’ve seen in class. Therefore the interval of convergence of the given Taylor series is
(−1, 1]. �

b. Use this series to show that ln

(
3

2

)
=

1

2
− 1

8
+

1

24
− 1

64
+ · · · =

∞∑
n=1

(−1)n+1

n2n
. [3]

Solution. Since a function is equal to its Taylor series within the latter’s radius of
convergence and

∣∣ 3
2 − 1

∣∣ = 1
2 < 1, we must have

ln

(
3

2

)
= ln

(
1 +

1

2

)
=
∞∑
n=1

(−1)n+1

n

(
1

2

)n
=
∞∑
n=1

(−1)n+1

n2n
,

as desired. �

c. Find an n such that Tn

(
1

2

)
=

1

2
− 1

8
+

1

24
− 1

64
+ · · ·+ (−1)n+1

n2n
is guaranteed

to be within 0.01 =
1

100
of ln

(
3

2

)
. [6]

Solution. We need to find an n such that∣∣∣∣ln(3

2

)
− Tn

(
1

2

)∣∣∣∣ =

∣∣∣∣∣
∞∑

i=n+1

(−1)i+1

i2i

∣∣∣∣∣ < 0.01 .

One could, with some effort, accomplish this by considering the nth remainder term,
Rn
(
1
2

)
, of the given Taylor series, but in this case there is a simpler approach available.

Note that
∞∑
n=1

(−1)n+1

n2n
is an alternating series. It follows from the proof of the Alternating

Series Test that ∣∣∣∣∣
∞∑

i=n+1

(−1)i+1

i2i

∣∣∣∣∣ <
∣∣∣∣ (−1)n+2

(n+ 1)2n+1

∣∣∣∣ ,
14



so all we need to do is ensure that

∣∣∣∣ (−1)n+2

(n+ 1)2n+1

∣∣∣∣ =
1

(n+ 1)2n+1
< 0.01 =

1

100
. A little

brute force goes a long way here:

n 1 2 3 4 5 · · ·
1

(n+1)2n+1
1
8

1
24

1
64

1
160

1
768 · · ·

Thus n = 4 does the job. (Note that any larger n would serve too.) �

[Total = 100]

Part IV - Something different. Bonus!

eiπ. Write a haiku touching on caclulus or mathmatics in general. [2]

haiku?

seventeen in three:
five and seven and five of

syllables in lines

I hope that you enjoyed the course. Enjoy the rest of the summer!
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