Mathematics 1100Y - Calculus I: Calculus of one variable
 Trent University, Summer 2010
 Final Examination

Time: 09:00-12:00, on Friday, 30 July, 2010. Brought to you by Стефан Біланюк. Instructions: Show all your work and justify all your answers. If in doubt, ask!
Aids: Calculator; one aid sheet (all sides!); one brain (no limit on active neurons).
Part I. Do all three (3) of $\mathbf{1 - 3}$.

1. Compute $\frac{d y}{d x}$ as best you can in any three (3) of a-f. [15 $=3 \times 5$ each $]$
a. $x^{2}+3 x y+y^{2}=23$
b. $y=\ln (\tan (x))$
c. $y=\int_{x}^{3} \ln (\tan (t)) d t$
d. $y=\frac{e^{x}}{e^{x}-e^{-x}}$
e. $\begin{aligned} & x=\cos (2 t) \\ & y=\sin (3 t)\end{aligned}$
f. $y=(x+2) e^{x}$
2. Evaluate any three (3) of the integrals a-f. $\quad[15=3 \times 5$ each $]$
a. $\int_{-\pi / 4}^{\pi / 4} \tan (x) d x$
b. $\int \frac{1}{t^{2}-1} d t$
c. $\int_{0}^{\pi} x \cos (x) d x$
d. $\int \sqrt{w^{2}+9} d w$
e. $\int_{1}^{e} \ln (x) d x$
f. $\int \frac{e^{x}}{e^{2 x}+2 e^{x}+1} d x$
3. Do any five (5) of a-i. $\quad[25=5 \times 5$ ea.]
a. Find the volume of the solid obtained by rotating the region bounded by $y=\sqrt{x}$, $0 \leq x \leq 4$, the x-axis, and $x=4$, about the x-axis.
b. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 1} 3 x=3$.
c. Find the Taylor series of $f(x)=\frac{x^{2}}{1-x^{2}}$ at $a=0$ without taking any derivatives.
d. Sketch the polar curve $r=1+\sin (\theta)$ for $0 \leq \theta \leq 2 \pi$.
e. Use the limit definition of the derivative to compute $f^{\prime}(1)$ for $f(x)=x^{2}$.
f. Use the Right-hand Rule to compute the definite integral $\int_{1}^{2} \frac{x}{2} d x$.
g. Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges absolutely, converges conditionally, or diverges.
h. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^{2}}{\pi^{n}} x^{n}$.
i. Compute the arc-length of the polar curve $r=\theta, 0 \leq \theta \leq 1$.

Part II. Do any two (2) of 4-6.
4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x)=e^{-x^{2}}$, and sketch its graph. [15]
5. Find the area of the surface obtained by rotating the curve $y=\tan (x), 0 \leq x \leq \frac{\pi}{4}$, about the x-axis. [15]
6. Find the volume of the solid obtained by rotating the region below $y=1-x^{2}$, $-1 \leq x \leq 1$, and above the x-axis about the line $x=2$. [15]

Part III. Do one (1) of $\mathbf{7}$ or $\mathbf{8}$.
7. Do all three (3) of $\mathbf{a}-\mathbf{c}$.
a. Use Taylor's formula to find the Taylor series of e^{x} centred at $a=-1$. [7]
b. Determine the radius and interval of convergence of this Taylor series. [4]
c. Find the Taylor series of e^{x} centred at $a=-1$ using the fact that the Taylor series of e^{x} centred at 0 is $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots$. [4]
8. Do all three (3) of $\mathbf{a}-\mathbf{c}$. You may assume that the Taylor series of $f(x)=\ln (1+x)$ centred at $a=0$ is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}+\cdots$.
a. Find the radius and interval of convergence of this Taylor series. [6]
b. Use this series to show that $\ln \left(\frac{3}{2}\right)=\frac{1}{2}-\frac{1}{8}+\frac{1}{24}-\frac{1}{64}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 2^{n}}$. [3]
c. Find an n such that $T_{n}\left(\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{8}+\frac{1}{24}-\frac{1}{64}+\cdots+\frac{(-1)^{n+1}}{n 2^{n}}$ is guaranteed to be within $0.01=\frac{1}{100}$ of $\ln \left(\frac{3}{2}\right) \cdot[6]$

$$
[\text { Total }=100]
$$

Part IV - Something different. Bonus!

$\mathbf{e}^{\mathbf{i} \pi}$. Write a haiku touching on caclulus or mathmatics in general. [2]

haiku?

seventeen in three: five and seven and five of syllables in lines

I hope that you enjoyed the course. Enjoy the rest of the summer!

