Mathematics 1100Y – Calculus I: Calculus of one variable TRENT UNIVERSITY, Summer 2010 Final Examination

Time: 09:00-12:00, on Friday, 30 July, 2010.Brought to you by Стефан Біланюк.Instructions: Show all your work and justify all your answers. If in doubt, ask!Aids: Calculator; one aid sheet (all sides!); one brain (no limit on active neurons).

Part I. Do all three (3) of 1-3.

1. Compute $\frac{dy}{dx}$ as best you can in any three (3) of **a**-**f**. [15 = 3 × 5 each]

a.
$$x^2 + 3xy + y^2 = 23$$
 b. $y = \ln(\tan(x))$ **c.** $y = \int_x^3 \ln(\tan(t)) dt$
d. $y = \frac{e^x}{e^x - e^{-x}}$ **e.** $\begin{array}{l} x = \cos(2t) \\ y = \sin(3t) \end{array}$ **f.** $y = (x+2)e^x$

2. Evaluate any three (3) of the integrals \mathbf{a} -f. $[15 = 3 \times 5 \text{ each}]$

a.
$$\int_{-\pi/4}^{\pi/4} \tan(x) dx$$
 b. $\int \frac{1}{t^2 - 1} dt$ **c.** $\int_0^{\pi} x \cos(x) dx$
d. $\int \sqrt{w^2 + 9} dw$ **e.** $\int_1^e \ln(x) dx$ **f.** $\int \frac{e^x}{e^{2x} + 2e^x + 1} dx$

3. Do any five (5) of **a**-**i**. $[25 = 5 \times 5 \text{ ea.}]$

- **a.** Find the volume of the solid obtained by rotating the region bounded by $y = \sqrt{x}$, $0 \le x \le 4$, the x-axis, and x = 4, about the x-axis.
- **b.** Use the $\varepsilon \delta$ definition of limits to verify that $\lim_{x \to 1} 3x = 3$.

c. Find the Taylor series of $f(x) = \frac{x^2}{1-x^2}$ at a = 0 without taking any derivatives.

- **d.** Sketch the polar curve $r = 1 + \sin(\theta)$ for $0 \le \theta \le 2\pi$.
- e. Use the limit definition of the derivative to compute f'(1) for $f(x) = x^2$.
- **f.** Use the Right-hand Rule to compute the definite integral $\int_1^2 \frac{x}{2} dx$.
- **g.** Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$ converges absolutely, converges conditionally, or diverges.
- **h.** Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2}{\pi^n} x^n$.
- i. Compute the arc-length of the polar curve $r = \theta, 0 \le \theta \le 1$.

Part II. Do any two (2) of 4-6.

- 4. Find the domain, all maximum, minimum, and inflection points, and all vertical and horizontal asymptotes of $f(x) = e^{-x^2}$, and sketch its graph. [15]
- 5. Find the area of the surface obtained by rotating the curve $y = \tan(x), 0 \le x \le \frac{\pi}{4}$, about the *x*-axis. [15]
- 6. Find the volume of the solid obtained by rotating the region below $y = 1 x^2$, $-1 \le x \le 1$, and above the x-axis about the line x = 2. [15]

Part III. Do one (1) of 7 or 8.

- 7. Do all three (3) of $\mathbf{a}-\mathbf{c}$.
 - **a.** Use Taylor's formula to find the Taylor series of e^x centred at a = -1. [7]
 - **b.** Determine the radius and interval of convergence of this Taylor series. [4]
 - **c.** Find the Taylor series of e^x centred at a = -1 using the fact that the Taylor series of e^x centred at 0 is $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \cdots$ [4]
- 8. Do all three (3) of **a**-**c**. You may assume that the Taylor series of $f(x) = \ln(1+x)$ centred at a = 0 is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \cdots$.
 - **a.** Find the radius and interval of convergence of this Taylor series. [6]
 - **b.** Use this series to show that $\ln\left(\frac{3}{2}\right) = \frac{1}{2} \frac{1}{8} + \frac{1}{24} \frac{1}{64} + \dots = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n2^n}$. [3]

c. Find an *n* such that
$$T_n\left(\frac{1}{2}\right) = \frac{1}{2} - \frac{1}{8} + \frac{1}{24} - \frac{1}{64} + \dots + \frac{(-1)}{n2^n}$$
 is guaranteed to be within $0.01 = \frac{1}{100}$ of $\ln\left(\frac{3}{2}\right)$. [6]

|Total = 100|

Part IV - Something different. Bonus!

 $e^{i\pi}$. Write a haiku touching on caclulus or mathematics in general. [2]

haiku?

seventeen in three: five and seven and five of syllables in lines

I HOPE THAT YOU ENJOYED THE COURSE. ENJOY THE REST OF THE SUMMER!