Mathematics 1100Y - Calculus I: Calculus of one variable

Trent University, Summer 2010

Assignment \#10
Lissajous curves and a bit of Maple
Due on Wednesday, 28 July, 2010.

Lissajous curves are parametric curves of the form $\begin{aligned} & x=A \cos (a t) \\ & y=B \sin (b t)\end{aligned}$, where t is the parameter and A, B, a, and b are constants. (This is not the most general definition, but let's keep some things simple.) Various common curves can be realized as Lissajous curves. For example, if $a=b \neq 0$, then one gets an ellipse; if also $A=B$, a circle. In what follows we will assume, unless stated otherwise, that $A=B=1$, that a and b are both positive integers, and that $0 \leq t \leq 2 \pi$.

Lissajous curves describe complex harmonic motions and can arise, for example, in problems in orbital mechanics and in signal processing. They are named after Jules Antoine Lissajous, a French mathematician who studied them extensively in the mid-19th Century, though they had received some attention earlier.

Before attempting question $\mathbf{1}$ below, please read the handout A very quick introduction to Maple, which is mostly pointers to places to learn about Maple, and play around with Maple a little.

1. Use Maple to plot the Lissajous curves for the combinations of a and b given in the following table:

$$
\begin{array}{lllllllll}
a & 1 & 2 & 3 & 2 & 2 & 4 & 3 & 4 \\
h & 2 & 1 & 2 & 3 & 4 & 2 & 4 & 3
\end{array}
$$

What can you deduce about the behaviour of Lissajous curves for different choices of a and b from these examples? Feel free to plot Lissajous curves for additional choices of a and b to test and/or support your deductions. [5]
2. Is it possible for a Lissajous curve to describe (part of) a parabola? If so, give an example; if not, explain why not. [5]
Note: If you can make use of Maple for 2, more power to you, but you don't need to.

