
Name: Solutions Student Number:

Mathematics 1110H, Trent University, Fall 2025.

Test #5 for Sections F03 and F05. Friday, 28 November. Time: 30 minutes.

Instructions
• Write your name and student number at the top.
• Use only this sheet of paper, including the back side. If you need more paper, ask for it.
• You may use an aid sheet, A4- or letter-size with whatever you want written on all sides, and

a calculator, with no restrictions beyond not being able to communicate with other devices.
• Do any four (4) of questions 1–6.
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∫ 2
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x2 − x− 2

x+ 1
dx 2.

∫
ex cos(x) dx 3.

∫ π/4
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∫ π/2
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cos3(x) dx 5.

∫
x ln

(
x2
)
dx 6.

∫ 2

0

4x√
4 + x2

dx

Solutions. 1. We will factor the numerator to help simplify the integrand, and then use
the power rule for integration.∫ 2
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2. We will use integration by parts twice and do a little algebra afterwards.∫
ex cos(x) dx = ex sin(x)−

∫
ex sin(x) dx

Parts with u = ex and
v′ = cos(x), so u′ = ex

and v = sin(x).

= ex sin(x)−
[
ex (− cos(x))−

∫
ex (− cos(x)) dx

] Parts with s = ex

and t′ = sin(x), so
s′ = ex and
t = − cos(x).

= ex sin(x) + ex cos(x)−
∫
ex cos(x) dx

Moving the

∫
ex cos(x) dx at the end to the beginning, we get that 2

∫
ex cos(x) dx =

ex sin(x) + ex cos(x). It follows that∫
ex cos(x) dx =

ex sin(x) + ex cos(x)

2
+ C. �

3. We will use the substitution w = sec(x), so dw = sec(x) tan(x) dx, and change the limits

as we go: x 0 π/4

w 1
√
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√
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√
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=
√
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2 tan(x) sec2(x) dx = 2
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4. We will use the identity cos2(x) = 1 − sin2(x) and the substitution w = sin(x), so

dw = cos(x) dx, and change the limits as we go: x 0 π/2

w 0 1∫ π/2

0

cos3(x) dx =

∫ π/2

0

cos2(x) cos(x) dx =
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5. We will first simplify the integrand a little, and then use integration by parts with

u = ln(x) and v′ = x, so u′ =
1

x
and v =

x2

2
.

∫
x ln

(
x2
)
dx =

∫
x · 2ln () dx = 2

∫
x ln(x) dx = 2
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∫
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]
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∫
x dx = x2ln(x)− x2
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6. We will use the substitution w = 4 + x2, so dw = 2x dx, and change the limits as we
go: x 0 2

w 4 8∫ 2

0

4x√
4 + x2

dx =

∫ 8

4
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w
dw =
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2w−1/2 dw = 2 · w
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√
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