

Name: Solutions Student Number: _____

Mathematics 1110H, TRENT UNIVERSITY, Fall 2025.

Test #5 for Sections F03 and F05. Friday, 28 November. Time: 30 minutes.

Instructions

- Write your name and student number at the top.
- Use only this sheet of paper, including the back side. If you need more paper, ask for it.
- You may use an aid sheet, A4- or letter-size with whatever you want written on all sides, and a calculator, with no restrictions beyond not being able to communicate with other devices.
- **Do any four (4) of questions 1–6.**

$$\begin{array}{lll} 1. \int_1^2 \frac{x^2 - x - 2}{x + 1} dx & 2. \int e^x \cos(x) dx & 3. \int_0^{\pi/4} 2 \tan(x) \sec^2(x) dx \\ 4. \int_0^{\pi/2} \cos^3(x) dx & 5. \int x \ln(x^2) dx & 6. \int_0^2 \frac{4x}{\sqrt{4+x^2}} dx \end{array}$$

SOLUTIONS. 1. We will factor the numerator to help simplify the integrand, and then use the power rule for integration.

$$\begin{aligned} \int_1^2 \frac{x^2 - x - 2}{x + 1} dx &= \int_1^2 \frac{(x+1)(x-2)}{x+1} dx = \int_1^2 (x-2) dx \\ &= \left(\frac{x^2}{2} - 2x \right) \Big|_1^2 = \left(\frac{2^2}{2} - 2 \cdot 2 \right) - \left(\frac{1^2}{2} - 2 \cdot 1 \right) \\ &= (2-4) - \left(\frac{1}{2} - 2 \right) = -2 - \left(-\frac{3}{2} \right) = -\frac{1}{2} \quad \square \end{aligned}$$

2. We will use integration by parts twice and do a little algebra afterwards.

$$\begin{aligned} \int e^x \cos(x) dx &= e^x \sin(x) - \int e^x \sin(x) dx && \begin{aligned} &\text{Parts with } u = e^x \text{ and} \\ &v' = \cos(x), \text{ so } u' = e^x \\ &\text{and } v = \sin(x). \end{aligned} \\ &= e^x \sin(x) - \left[e^x (-\cos(x)) - \int e^x (-\cos(x)) dx \right] && \begin{aligned} &\text{Parts with } s = e^x \\ &\text{and } t' = \sin(x), \text{ so} \\ &s' = e^x \text{ and} \\ &t = -\cos(x). \end{aligned} \\ &= e^x \sin(x) + e^x \cos(x) - \int e^x \cos(x) dx \end{aligned}$$

Moving the $\int e^x \cos(x) dx$ at the end to the beginning, we get that $2 \int e^x \cos(x) dx = e^x \sin(x) + e^x \cos(x)$. It follows that

$$\int e^x \cos(x) dx = \frac{e^x \sin(x) + e^x \cos(x)}{2} + C. \quad \square$$

3. We will use the substitution $w = \sec(x)$, so $dw = \sec(x) \tan(x) dx$, and change the limits as we go: $\begin{matrix} x & 0 & \pi/4 \\ w & 1 & \sqrt{2} \end{matrix}$ (Since $\cos(\pi/4) = 1/\sqrt{2}$, $\sec(\pi/4) = 1/\cos(\pi/4) = 1/(1/\sqrt{2}) = \sqrt{2}$.)

$$\begin{aligned} \int_0^{\pi/4} 2 \tan(x) \sec^2(x) dx &= 2 \int_0^{\pi/4} \sec(x) \sec(x) \tan(x) dx = \int_1^{\sqrt{2}} w dw = \frac{w^2}{2} \Big|_1^{\sqrt{2}} \\ &= \frac{(\sqrt{2})^2}{2} - \frac{1^2}{2} = \frac{2}{2} - \frac{1}{2} = \frac{1}{2} \quad \square \end{aligned}$$

4. We will use the identity $\cos^2(x) = 1 - \sin^2(x)$ and the substitution $w = \sin(x)$, so $dw = \cos(x) dx$, and change the limits as we go: $\begin{matrix} x & 0 & \pi/2 \\ w & 0 & 1 \end{matrix}$

$$\begin{aligned} \int_0^{\pi/2} \cos^3(x) dx &= \int_0^{\pi/2} \cos^2(x) \cos(x) dx = \int_0^{\pi/2} (1 - \sin^2(x)) \cos(x) dx \\ &= \int_0^1 (1 - w^2) dw = \left(w - \frac{w^3}{3} \right) \Big|_0^1 = \left(1 - \frac{1^3}{3} \right) - \left(0 - \frac{0^3}{3} \right) \\ &= \frac{2}{3} - 0 = \frac{2}{3} \quad \square \end{aligned}$$

5. We will first simplify the integrand a little, and then use integration by parts with $u = \ln(x)$ and $v' = x$, so $u' = \frac{1}{x}$ and $v = \frac{x^2}{2}$.

$$\begin{aligned} \int x \ln(x^2) dx &= \int x \cdot 2\ln(x) dx = 2 \int x \ln(x) dx = 2 \left[\frac{x^2}{2} \ln(x) - \int \frac{1}{x} \cdot \frac{x^2}{2} dx \right] \\ &= x^2 \ln(x) - \int x dx = x^2 \ln(x) - \frac{x^2}{2} + C \quad \square \end{aligned}$$

6. We will use the substitution $w = 4 + x^2$, so $dw = 2x dx$, and change the limits as we go: $\begin{matrix} x & 0 & 2 \\ w & 4 & 8 \end{matrix}$

$$\begin{aligned} \int_0^2 \frac{4x}{\sqrt{4+x^2}} dx &= \int_4^8 \frac{2}{\sqrt{w}} dw = \int_4^8 2w^{-1/2} dw = 2 \cdot \frac{w^{1/2}}{1/2} \Big|_4^8 = 4\sqrt{w} \Big|_4^8 \\ &= 4\sqrt{8} - 4\sqrt{4} = 4 \cdot 2\sqrt{2} - 4 \cdot 2 = 8\sqrt{2} - 8 = 8(\sqrt{2} - 1) \quad \blacksquare \end{aligned}$$