

Name: \_\_\_\_\_ Student Number: \_\_\_\_\_

Mathematics 1110H, TRENT UNIVERSITY, Fall 2025

Test #1 for Sections F02 and F04. Friday, 26 September. Time: 20 minutes.

### Instructions

- Write your name and student number at the top.
- Use only this sheet of paper, including the back side. If you need more paper, ask for it.
- You may use an aid sheet, A4- or letter-size with whatever you want written on all sides, and a calculator, with no restrictions beyond not being able to communicate with other devices.
- **Do any two (2) of questions 1–3.** If you do all three and don't cross one out, only the first two encountered by the graders will be marked.

1. Find the  $x$ -intercepts and the location of the tip of the parabola  $y = x^2 + 2x - 8$ . [5]

SOLUTION I. *Intercepts first.* If you spot that  $y = x^2 + 2x - 8 = (x - 2)(x + 4)$ , it is easy to see that the  $x$ -intercepts of the parabola, the  $x$  values that make  $y = 0$ , are  $x = 2$  and  $x = -4$ . If you don't spot the factorization, you can use the quadratic formula to find the  $x$ -intercepts:

$$\begin{aligned}y = x^2 + 2x - 8 = 0 \implies x &= \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-8)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 - (-32)}}{2} \\&= \frac{-2 \pm \sqrt{36}}{2} = \frac{-2 \pm 6}{2} = \frac{4}{2} = 2 \text{ or } \frac{-8}{2} = -4\end{aligned}$$

Either way, the  $x$ -coordinate of the tip of the parabola is halfway between the intercepts, i.e.  $x = \frac{-4 + 2}{2} = \frac{-2}{2} = -1$ . We plug this into the parabola's equation to get the  $y$ -coordinate of the tip:  $y = (-1)^2 + 2(-1) - 8 = 1 - 2 - 8 = -9$ . Thus the tip of the parabola is at the point  $(-1, -9)$ .  $\square$

SOLUTION II. *Tip first.* We shall find the coordinates of the tip of the parabola by completing the square in the equation defining the parabola:

$$\begin{aligned}y &= x^2 + 2x - 8 = \left(x + \frac{2}{2}\right)^2 - \left(\frac{2}{2}\right)^2 - 8 = (x + 1)^2 - 1^2 - 8 \\&= (x - (-1))^2 - 1 - 8 = (x - (-1))^2 - 9\end{aligned}$$

Thus the tip of the parabola is at the point  $(-1, -9)$ : the  $x$ -coordinate  $-1$  makes the squared part 0, leaving  $-9$  as the  $y$ -coordinate.

For the  $x$ -intercepts, we could factor the quadratic or apply the quadratic formula as in the solution above. Alternatively, we could observe that in the completed square form,  $y = 0$  exactly when  $(x - (-1))^2 - 9 = 0$ , i.e. exactly when  $(x + 1)^2 = 9$ . This means that  $x + 1 = \pm\sqrt{9} = \pm 3$ , so  $x = -1 - 3 = -4$  or  $x = -1 + 3 = 2$ . Thus the  $x$ -intercepts of the parabola are  $x = -4$  and  $x = 2$ . ■

2. Use the  $\varepsilon$ - $\delta$  definition of limits to verify that  $\lim_{x \rightarrow -1} (2x + 4) = 2$ . [5]

SOLUTION. We need to check that for any given  $\varepsilon > 0$ , there is a  $\delta > 0$ , such that if  $|x - (-1)| < \delta$ , then  $|(2x + 4) - 2| < \varepsilon$ . As usual we try to reverse-engineer the necessary  $\delta$  from the desired conclusion:

$$\begin{aligned} |(2x + 4) - 2| < \varepsilon &\iff |2x + 2| < \varepsilon \iff |2(x + 1)| < \varepsilon \iff 2|x + 1| < \varepsilon \\ &\iff |x + 1| < \frac{\varepsilon}{2} \iff |x - (-1)| < \frac{\varepsilon}{2} \end{aligned}$$

If we set  $\delta = \frac{\varepsilon}{2}$ , then if  $|x - (-1)| < \delta$ , we are guaranteed to have  $|(2x + 4) - 2| < \varepsilon$ , because every step in the reverse-engineering process above is fully reversible.

Since we can find a  $\delta > 0$  for any  $\varepsilon > 0$ ,  $\lim_{x \rightarrow -1} (2x + 4) = 2$  satisfies the  $\varepsilon$ - $\delta$  definition of limits. ■

3. Use the practical rules for computing limits to compute  $\lim_{x \rightarrow 1} \frac{x^2 - 7x + 6}{x^2 + 3x - 4}$ . [5]

SOLUTION. Observe that both the numerator and the denominator of the given rational function go to 0 as  $x$  goes to 1, since  $1^2 - 7 \cdot 1 + 6 = 1 - 7 + 6 = 0$  and  $1^2 + 3 \cdot 1 - 4 = 1 + 3 - 4 = 0$ . One consequence is that  $x - 1$  is a factor of both the numerator and denominator; it shouldn't be hard to figure out that the other factors are  $x - 6$  and  $x + 4$ , respectively. (Using the quadratic formula, if necessary.) It follows that

$$\lim_{x \rightarrow 1} \frac{x^2 - 7x + 6}{x^2 + 3x - 4} = \lim_{x \rightarrow 1} \frac{(x - 6)(x - 1)}{(x + 4)(x - 1)} = \lim_{x \rightarrow 1} \frac{x - 6}{x + 4} = \frac{1 - 6}{1 + 4} = \frac{-5}{5} = -1. \quad ■$$