
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Section A, Trent University, Fall 2025

Solutions to the Final Examination
With some corrections.

11:00-14:00 on Monday, 8 December, in the Gym.

Instructions: Do both of parts X and Y, and, if you wish, part Z. Please show all your
work, justify all your answers, and simplify these where you reasonably can. When you
are asked to do k of n questions, only the first k that are not crossed out will be marked.
If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can’t communicate with other devices; all sides of one
letter- or A4-size sheet, with whatever you want written on it; your own brain.

Part X. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any four (4) of a–f. [20 = 4 × 5 each]

a. y =
√

1 + x4 b. y =
x+ 1

x− 1
c. y =

(
ex − e−x

)2
d. y2 − x2 = 1 e. y = ln

(
x41
)

f. y = sec(x) tan(x)

Solutions. a. Power Rule and Chain Rule.

dy

dx
=

d

dx

√
1 + x4 =

d

dx

(
1 + x4

)1/2
=

1

2

(
1 + x4

)−1/2 d

dx

(
1 + x4

)
=

1

2
√

1 + x4
· 4x3 =

2x3√
1 + x4

�

b. Quotient Rule.

dy

dx
=

d

dx

(
x+ 1

x− 1

)
=

[
d
dx (x+ 1)

]
(x− 1)− (x+ 1)

[
d
dx (x− 1)

]
(x− 1)2

=
1(x− 1)− (x+ 1)1

(x− 1)2

=
x− 1− x− 1

(x− 1)2
=

−2

(x− 1)2
�

c. Power Rule and Chain Rule.

dy

dx
=

d

dx

(
ex − e−x

)2
= 2

(
ex − e−x

) d

dx

(
ex − e−x

)
= 2

(
ex − e−x

)( d

dx
ex − d

dx
e−x

)
= 2

(
ex − e−x

)(
ex − e−x d

dx
(−x)

)
= 2

(
ex − e−x

) (
ex − e−x(−1)

)
= 2

(
ex − e−x

) (
ex + e−x

)
= 2

(
(ex)

2
+ exe−x − e−xex −

(
e−x

)2)
= 2

(
e2x + e0 − e0 − e−2x

)
= 2

(
e2x − e−2x

)
�

d. Implicit differentiation.

y2 − x2 = 1 =⇒ d

dx

(
y2 − x2

)
=

d

dx
1 =⇒ dy2

dx
− dx2

dx
= 0 =⇒ dy2

dy
· dy
dx
− 2x = 0

=⇒ 2y
dy

dx
= 2x =⇒ dy

dx
=

2x

2y
=
x

y
�
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d. Solve for y, the Power Rule and Chain Rule.

y2 − x2 = 1 =⇒ y2 = 1 + x2

=⇒ y = ±
√

1 + x2 = ±
(
1 + x2

)1/2
Then

dy

dx
=

d

dx

(
±
(
1 + x2

)1/2)
= ±1

2

(
1 + x2

)−1/2 d

dx

(
1 + x2

)
= ±1

2

(
1 + x2

)−1/2 · 2x = ±x
(
1 + x2

)−1/2
=

±x√
1 + x2

�

e. Simplify first.

dy

dx
=

d

dx
ln
(
x41
)

=
d

dx
41ln(x) = 41 · 1

x
=

41

x
�

e. Chain and Power Rule.

dy

dx
=

d

dx
ln
(
x41
)

=
1

x41
· d
dx
x41 =

1

x41
· 41x40 =

41

x
�

f. Product Rule.

dy

dx
=

d

dx
(sec(x) tan(x)) =

[
d

dx
sec(x)

]
tan(x) + sec(x)

[
d

dx
tan(x)

]
= [sec(x) tan(x)] tan(x) + sec(x)

[
sec2(x)

]
= sec(x) tan2(x) + sec3(x)

= sec(x)
(
sec2(x)− 1

)
+ sec3(x) = sec3(x)− sec(x) + sec3(x) = 2 sec3(x)− sec(x)

There are, of course, lots of ways to rewrite this answer using various trigonometric iden-
tities. �
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2. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫ 2

0

(x− 2)2 dx b.

∫
(x ln(x))

2
dx c.

∫ π/2

0

x cos(x) dx

d.

∫
2xex

2

dx e.

∫ π

0

2 sin(x) cos(x) dx f.

∫
x
√
x2 + 4 dx

Solutions. a. Algebra and the Power Rule. We expand the integrand first.∫ 2

0

(x− 2)2 dx =

∫ 2

0

(
x2 − 4x+ 4

)
dx =

(
x3

3
− 4

x2

2
+ 4x

)∣∣∣∣2
0

=

(
x3

3
− 2x2 + 4x

)∣∣∣∣2
0

=

(
23

3
− 2 · 22 + 4 · 2

)
−
(

03

3
− 2 · 02 + 4 · 0

)
=

(
8

3
− 8 + 8

)
− (0− 0 + 0) =

8

3
− 0 =

8

3
�

a. Substitution and the Power Rule. We use the substitution w = x− 2, so dw = dx, and
change the limits as we go:

x 0 2

w −2 0∫ 2

0

(x− 2)2 dx =

∫ 0

−2
w2 dw =

w3

3

∣∣∣∣0
−2

=
03

3
− (−2)2

3
= 0− −8

3
=

8

3
�

b. Integration by parts, twice. We will first use integration by parts with u = (ln(x))
2

and v′ = x2, so u′ = 2 ln(x)
1

x
and v =

x3

3
. The second time we use integration by parts

with s = ln(x) and t′ = x2, so s′ =
1

x
and t =

x3

3
.

∫
(x ln(x))

2
dx =

∫
x2 (ln(x))

2
dx =

x3

3
(ln(x))

2 −
∫

2 ln(x)
1

x

x3

3
dx

=
x3

3
(ln(x))

2 − 2

3

∫
x2ln(x) dx

=
x3

3
(ln(x))

2 − 2

3

[
x3

3
ln(x)−

∫
1

x
· x

3

3
dx

]
=
x3

3
(ln(x))

2 − 2x3

9
ln(x) +

2

9

∫
x2 dx

=
x3

3
(ln(x))

2 − 2x3

9
ln(x) +

2

9
· x

3

3
+ C

=
x3

3
(ln(x))

2 − 2x3

9
ln(x) +

x3

27
+ C �
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c. Integration by parts. We will use integration by parts with u = x and v′ = cos(x), so
u′ = 1 and v = sin(x).∫ π/2

0

x cos(x) dx = x sin(x)|π/20 −
∫ π/2

0

1 sin(x) dx

=
π

2
sin
(π

2

)
− 0 sin(0)− (− cos(x))|π/20 =

π

2
1− 0 + cos(x)|π/20

=
π

2
+ cos

(π
2

)
− cos(0) =

π

2
+ 0− 1 =

π

2
− 1 �

d. Substitution. We will us the substitution w = x2, so dw = 2x dx.∫
2xex

2

dx =

∫
ew dw = ew + C = ex

2

+ C �

e. Substitution. We will us the substitution w = sin(x), so dw = cos(x) dx, changing the
limits as we go: x 0 π

w 0 0
. Then

∫ π

0

2 sin(x) cos(x) dx =

∫ 0

0

2w dw = 0

because the definite integral is over a single point. �

e. Substitution and the Power Rule. We will us the substitution w = sin(x), so dw =
cos(x) dx, changing the limits as we go: x 0 π

w 0 0
. Then

∫ π

0

2 sin(x) cos(x) dx =

∫ 0

0

2w dw = w2
∣∣0
0

= 02 − 02 = 0 �

e. Trigonometric identity and substitution. We will use the double-angle formula for sin;
the substitution will be z = 2x, so dz = 2 dx and thus dx = 1

2 dz, and we’ll change the

limits as we go along: x 0 π

z 0 2π∫ π

0

2 sin(x) cos(x) dx =

∫ π

0

sin(2x) dx =

∫ 2π

0

sin(z)
1

2
dz = − cos(z)|2π0

= (− cos(2π))− (− cos(0)) = (−1)− (−1) = 0 �

f. Substitution and the Power Rule. We will use the substitution w = x2+4, so dw = 2x dx
and thus x dx = 1

2 dx.∫
x
√
x2 + 4 dx =

∫ √
w

1

2
dx =

1

2

∫
w1/2 dw =

1

2
· w

3/2

3/2
+ C =

w3/2

3
+ C

=
1

3

(
x2 + 4

)3/2
+ C �
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3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Find the area between y =
√
x and y = x

2 , where 0 ≤ x ≤ 4.

b. Use the ε–δ definition of limits to verify that lim
x→4

(3x− 11) = 1.

c. Compute lim
x→∞

x2

2 + 3x2
.

d. Find the volume of the solid obtained by revolving the region between the line
x = 1 and the line y = x, for 0 ≤ y ≤ 1, about the x-axis.

e. Use the limit definition of the derivative to compute
d

dx
(2x+ 3).

f. Determine whether f(x) =

{
e−1/x

2

x 6= 0

0 x = 0
is continuous at x = 0 or not.

Solutions. a. Here is a sketch of the region:

It is not hard to check that y =
√
x and y = x

2 intersect at the origin and the point
(4, 2), and that between these points sy =

√
x is above y = x

2 . It follows that the area of
the region is:

A =

∫ 4

0

(√
x− x

2

)
dx =

∫ 4

0

(
x1/2 − 1

2
x

)
dx =

(
x3/2

3/2
− 1

2
· x

2

2

)∣∣∣∣4
0

=

(
2

3
x3/2 − 1

4
x2
)∣∣∣∣4

0

=

(
2

3
43/2 − 1

4
42
)
−
(

2

3
03/2 − 1

4
02
)

=

(
2

3
8− 4

)
− 0 =

16

3
− 12

3
=

4

3
�

b. To verify that lim
x→4

(3x− 11) = 1 we need to check that for every ε > 0, there is a δ > 0,

such that if |x− 4| < δ, then |(3x− 11)− 1| < ε. As usual, we attempt to reverse-engineer
the necessary delta from the desired conclusion. Suppose an ε > 0 is given.

|(3x− 11)− 1| < ε ⇐⇒ |3x− 12| < ε

⇐⇒ |3(x− 4)| < ε

⇐⇒ 3|x− 4| < ε

⇐⇒ |x− 4| < ε

3

Now set δ =
ε

3
. Then, when we have |x−4| < δ, we are guaranteed that |(3x− 11)− 1| < ε

because every step above is fully reversible. �
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c. Algebraically. Here we go:

lim
x→∞

x2

2 + 3x2
→∞
→∞ = lim

x→∞

x2

2 + 3x2
·

1
x2

1
x2

= lim
x→∞

1
2
x2 + 3

→ 1
→ 0 + 3

=
1

3
�

c. Using l’Hôpital’s Rule. Here we go:

lim
x→∞

x2

2 + 3x2
→∞
→∞ = lim

x→∞

d
dxx

2

d
dx (2 + 3x2)

= lim
x→∞

2x

0 + 6x
= lim
x→∞

1

3
=

1

3
�

d. Using the disk/washer method. Here is a sketch of the solid, with a generic disk
cross-section drawn in.

Since we are using disks and revolved about the x-axis, we ought to use x as the
variable because the disks are perpendicular to the x-axis. Note that 0 ≤ x ≤ 1 over the
region we started with, and that the radius of the disk at x is r = y−0 = y = x. It follows
that the volume of the solid is:

V =

∫ 1

0

πr2 dx =

∫ 1

0

πx2 dx =
πx3

3

∣∣∣∣1
0

=
π13

3
− π03

3
=
π

3
− 0 =

π

3
�

d. Using the cylindrical shell method. Here is a sketch of the solid, with a generic
cylindrical shell drawn in.
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Since we are using shells and revolved about the x-axis, we ought to use y as a variable
because the shells are perpendicular to the y-axis. Note that 0 ≤ y ≤ 1 over the given
region, and that the shell at y has radius r = y − 0 = y and height h = 1− x = 1− y. It
follows that the volume of the solid is:

V =

∫ 1

0

2πrh dy = 2π

∫ 1

0

y(1− y) dy = 2π

∫ 1

0

(
y − y2

)
dy = 2π

(
y2

2
− y3

3

)∣∣∣∣1
0

= 2π

(
12

2
− 13

3

)
− 2π

(
02

2
− 03

3

)
= 2π

(
1

2
− 1

3

)
− 2π · 0 = 2π

1

6
− 0 =

π

3
�

d. Geometry! We worked out in class that the volume of a right circular cone with radius

r and height h is V =
πr2h

3
. The solid of revolution in this problem is easily seen to be a

cone with r = h = 1, so it must have volume V =
π121

3
=
π

3
. �

e. The limit definition of the derivative is
d

dx
f(x) = f ′(x) = lim

h→0

f(x+ h)− f(x)

h
. In the

present instance, f(x) = 2x+ 3, so its derivative is:

d

dx
(2x+ 3) = lim

h→0

[2(x+ h) + 3]− [2x+ 3]

h
= lim
h→0

2x+ 2h+ 3− 2x− 3

h

= lim
h→0

2h

h
= lim
h→0

2 = 2 �

f. A function f(x) is continuous at x = 0 exactly when lim
x→0

f(x) = f(0). We take the limit

and see what happens when f(x) =

{
e−1/x

2

x 6= 0

0 x = 0
.

lim
x→0

f(x) = lim
x→0

e−1/x
2

= lim
z→−∞

ez (Since − 1

x2
→ −∞ as x→ 0.)

= 0 = f(0)

It follows, by the definition of continuity at a point, that f(x) is continuous at x = 0. �
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4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase
and decrease, maximum and minimum points, intervals of concavity, and inflection

points of f(x) =
x2

1 + x2
, and sketch its graph based on this information. [14]

Solution. We run through the indicated checklist.

i. Domain. Since 1 + x2 ≥ 1 > 0 for all x, f(x) =
x2

1 + x2
is defined for all x. (It is also

continuous and differentiable for all x.)

ii. Intercepts. f(0) =
02

1 + 02
=

0

1
= 0, so the y-intercept is y = 0.

f(x) =
x2

1 + x2
= 0 only when x2 = 0, which only occurs when x = 0. Thus the only

x-intercept is also the y-intercept.

iii. Vertical asymptotes. Since f(x) is defined and continuous for all x, and as vertical
asymptotes are discontinuities, f(x) does have any vertical asymptotes.

iv. Horizontal asymptotes. We take the limits as x→ ±∞ and see what happens.

lim
x→−∞

x2

1 + x2
= lim
x→−∞

x2

1 + x2
·

1
x2

1
x2

= lim
x→−∞

1
1
x2 + 1

=
1

0+ + 1
= 1−

lim
x→+∞

x2

1 + x2
= lim
x→+∞

x2

1 + x2
·

1
x2

1
x2

= lim
x→+∞

1
1
x2 + 1

=
1

0+ + 1
= 1−

Thus f(x) has x = 1 as a horizontal asymptote in both directions, which it approaches
from below in both directions.

v. Increase/decrease & maxima/minima. We first compute the derivative of f(x).

f ′(x) =
d

dx

(
x2

1 + x2

)
=

[
d
dxx

2
] (

1 + x2
)
− x2

[
d
dx

(
1 + x2

)]
(1 + x2)

2

=
[2x]

(
1 + x2

)
− x2 [2x]

(1 + x2)
2 =

2x+ 2x3 − 2x3

(1 + x2)
2 =

2x

(1 + x2)
2

Since the denominator of f ′(x) is defined for all x, the only critical points of f(x) will be

those for which f ′(x) =
2x

(1 + x2)
2 = 0, which can happen only when x = 0. Similarly,

since the denominator is always positive, f ′(x) is positive or negative exactly when the
numerator, 2x, is. It follows that f ′(x) < 0, and so f(x) is decreasing, exactly when x < 0,
and f ′(x) > 0, and so f(x) is increasing, exactly when x > 0. Thus the critical point at
x = 0 is a local (and absolute – why?) minimum. We summarize all this in a table:

x (−∞, 0) 0 (0,∞)
f ′(x) − 0 +
f(x) ↓ min ↑

8



vi. Concavity & inflection. We first compute the second derivative of f(x).

f ′′(x) =
d

dx
f ′(x) =

d

dx

(
2x

(1 + x2)
2

)
=

[
d
dx2x

] (
1 + x2

)2 − 2x
[
d
dx

(
1 + x2

)2](
(1 + x2)

2
)2

=
[2]
(
1 + x2

)2 − 2x
[
2
(
1 + x2

)
d
dx

(
1 + x2

)]
(1 + x2)

4 =
2
(
1 + x2

)2 − 2x
[
2
(
1 + x2

)
2x
]

(1 + x2)
4

=
2
(
1 + x2

)2 − 8x2
(
1 + x2

)
(1 + x2)

4 =
2
(
1 + x2

)
− 8x2

(1 + x2)
3 =

2− 6x2

(1 + x2)
3 =

2
(
1− 3x2

)
(1 + x2)

3

Since
2

(1 + x2)
3 is defined and positive for all x, f ′′(x) is positive, negative, or zero exactly

as 1 − 3x2 is. 1 − 3x2 = 0 ⇐⇒ x2 =
1

3
⇐⇒ x = ± 1√

3
≈ 0.5774. Similarly,

1− 3x2 > 0 ⇐⇒ x2 <
1

3
⇐⇒ − 1√

3
< x <

1√
3

and 1− 3x2 < 0 ⇐⇒ x2 >
1

3
⇐⇒ x <

− 1√
3

or x >
1√
3

. It follows that f(x) is concave up when − 1√
3
< x <

1√
3

and concave

down when x < − 1√
3

or x >
1√
3

, so both x = − 1√
3

and x =
1√
3

are inflection points.

We summarize all this in a table:

x
(
−∞,− 1√

3

)
− 1√

3

(
− 1√

3
, 1√

3

)
1√
3

(
1√
3
,∞
)

f ′′(x) − 0 + 0 −
f(x) _ infl ^ infl _

vii. The Graph. Cheating ever so slightly, we have SageMath draw the graph:

�
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Part Y. Do any two (2) of 5–7. [26 = 2 × 13 each] Here is the “more”!

5. The region below y =
√
x− 1 and above y = 0, where 1 ≤ x ≤ 5, is revolved about

the y-axis, making a solid of revolution.

a. Sketch the region. [1] b. Find the area of the region. [3]

c. Sketch the solid. [1] d. Find the volume of the solid. [8]

Solutions. a. Here is a sketch of the region.

�

b. We compute the area between the upper boundary and the lower boundary of the
region. We will use the substitution w = x − 1, so dw = dx, and change the limits as we
go: x 1 5

w 0 4

Area =

∫ 5

1

(√
x− 1− 0

)
dx =

∫ 5

1

(x− 1)1/2 dx =

∫ 4

0

w1/2 dw

=
w3/2

3/2

∣∣∣∣4
0

=
2

3
w3/2

∣∣∣∣4
0

=
2

3
· 43/2 − 2

3
· 03/2 =

2

3
· 8− 0 =

16

3
�

c. Here is a sketch of the solid:

�

d. Disk/washer method. Here is a sketch of the solid with a generic washer cross-section
drawn in:
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Since we are using washers and revolved the region about the y-axis, we ought to use
y as the variable because the washers are perpendicular to the y-axis. Note that 0 ≤ y ≤ 2
over the original region, and that the outer radius of the washer at y is always R = 5−0 = 5,
while the inner radius of the same washer is r = x−0 = x, where y =

√
x− 1, so x = y2+1,

and thus r = x = y2 + 1. It follows that the volume of the region is given by:

V =

∫ 2

0

π
(
R2 − r2

)
dy = π

∫ 2

0

(
52 −

(
y2 + 1

)2)
dy

= π

∫ 2

0

(
25−

(
y4 + 2y2 + 1

))
dy = π

∫ 2

0

(
−y4 − 2y2 + 24

)
dy

= π

(
−y

5

5
− 2y3

3
+ 24y

)∣∣∣∣2
0

= π

(
−25

5
− 2 · 23

3
+ 24 · 2

)
− π

(
−05

5
− 2 · 03

3
+ 24 · 0

)
= π

(
−32

5
− 16

3
+ 48

)
− π · 0 = π

(
−96

15
− 80

15
+

720

15

)
− 0

=
544π

15
≈ 113.9351 �

d. Cylindrical shell method. Here is a sketch of the solid with a generic cylindrical shell
cross-section drawn in:

Since we are using shells and revolved the region about the y-axis, the shells are parallel
to the y-axis and perpendicular to the x-axis, so we ought to use x as our variable. Note
that 1 ≤ x ≤ 5 over the original region, and that the shell at x has radius r = x − 0 = x
and height h = y − 0 = y =

√
x− 1. It follows that the volume of the region is given by:

V =

∫ 5

1

2πrh dx = 2π

∫ 5

1

x
√
x− 1 dx

Substitute w = x− 1, so dw = dx,
and change the limits as we go: x 1 5

w 0 4

= 2π

∫ 4

0

(w + 1)
√
w dw = 2π

∫ 4

0

(
w3/2 + w1/2

)
dw = 2π

(
w5/2

5/2
+
w3/2

3/2

)∣∣∣∣4
0

= 2π

(
2

5
w5/2 +

2

3
w3/2

)∣∣∣∣4
0

= 2π

(
2

5
· 45/2 +

2

3
· 43/2

)
− 2π

(
2

5
· 05/2 +

2

3
· 03/2

)
= 2π

(
2

5
· 32 +

2

3
· 8
)
− 2π · 0 = 2π

(
64

5
+

16

3

)
− 0 = 2π

(
192

15
+

80

15

)
= 2π · 272

15
=

544π

15
≈ 113.9351 �
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6. A small cardboard box has a square bottom and no top. If 48 cm2 of
cardboard are used to make the box, what is its maximum possible
volume? What are the dimensions of such a box of maximum volume?
[13]

Solution. Suppose the box has side length b at the square base and height h. The
volume of the box would then be V = b2h and its surface area would be A = b2 + 4bh
(the area of the base plus the areas of the four side panels). If we use all the cardboard to
make the box – which we ought to in order to get the maximum possible volume – then

A = b2 + 4bh = 48, which we can use to solve for h in terms of b: h =
48− b2

4b
=

12

b
− b

4
.

This, in turn, lets us express the volume as a function of b:

V = b2h = b2
(

12

b
− b

4

)
= 12b− b3

4

Note that we must have 0 < b ≤
√

48 = 4
√

3; on the one hand we can’t have b = 0, since
otherwise we would have A = 02 + 4 · 0 · h = 0 6= 48, and on the other hand b2 = 48 when
h = 0.

The given problem therefore comes down to maximizing V = 12b− b
3

4
for 0 < b ≤ 4

√
3.

At the endpoints we have:

lim
b→0+

V (b) = lim
b→0+

(
12b− b3

4

)
= 12 · 0− 03

4
= 0

V
(

4
√

3
)

= 12 · 4
√

3−
(
4
√

3
)3

4
= 48

√
3− 192

√
3

4
= 48

√
3− 48

√
3 = 0

It remains to check any critical points in the interval.

V ′(b) =
d

db

(
12b− b3

4

)
= 12− 3

4
b2 = 0 ⇐⇒ 48− 3b2 = 0 ⇐⇒ b2 =

48

3
= 16

⇐⇒ b = ±4

The critical point b = −4 < 0, so it is not in the interval, but b = 4 is in the interval since
0 < 4 < 4

√
3. At b = 4, we have:

V (4) = 12 · 4− 43

4
= 48− 16 = 32

Since this volume is greater than what we get at the endpoints and the volume function

V = 12b− b3

4
is defined and continuous for 0 < b ≤ 4

√
3, it follows that the maximum of

a box meeting the goven requirements is 32 cm3. (Recall that the area of the cardboard
used to make the box was givem in cm2.) �
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7. It is night in a dark and narrow alley. A four-armed robot, bearing a headlight 1.2 m
above the pavement, moves along the alley at 1 m/s from one end, and a kitten,
holding the tip of its straight-up tail 0.4 m above the pavement, moves along the alley
at 1 m/s from its other end. How is the length of the shadow cast by the kitten’s rear
and tail changing at the instant that the robot and the kitten are 4 m apart? [13]

Solution. Here is an augmented version of the given diagram, with the distance between
the robot and the kitten (really the kitten’s tail) labeled as x and the length of the shadow
labelled as s:

We are asked to work out how the length of the shadow is changing when the robot

and the kitten are 4 m apart, i.e.
ds

dt

∣∣∣∣
x=4

.

Looking at the diagram, it is not hard to see that we have two similar triangles: one
with height 1.2 m and base x+ s and a smaller one with height 0.4 m and base s. (They
are similar because they have a common angle at the tip of the shadow and each has a
right angle at the other end of their base.) Since corresponding sides in similar triangle

must have the same proportions, it follows that
x+ s

1.2
=

s

0.4
. It follows, in turn, that

x+ s

1.2
=

s

0.4
=⇒ x+ s = 1.2 · x+ s

1.2
= 1.2 · s

0.4
= 3s =⇒ x = 3s− s = 2s =⇒ s =

x

2
.

Note that because each of the robot and the kitten is moving towards the other at

constant rates of 1 m/s, the combined rate of closure is a constant 2 m/s, so
dx

dt
= −1−1 =

−2 at every instant, including when x = 4. Thus, at every instant,

ds

dt
=

d

dt

(x
2

)
=

1

2
· dx
dt

=
1

2
· (−2) = −1,

that is, the length of the shadow is changing at a rate of −1 ms at every instant, including
when the robot and the kitten are 4 m apart. �

[Total = 100]
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Part Z. Bonus points! Do one or both of 8 and 9.

8. Write an original haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

Solution. For reasons which ought to be obvious, you’re on your own! :-) �

9. A dangerously sharp tool is used to cut a cube with a side length of
3 cm into 27 smaller cubes with a side length of 1 cm. This can be
done easily with six cuts. Can it be done with fewer? (Rearranging
the pieces between cuts is allowed.) If so, explain how; if not, explain
why not. [1]

Solution Hint. There are 27 smaller cubes – consider the one in the center. �

Apologies for all the glitches.
Have a good break!
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