

Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
 TRENT UNIVERSITY, Fall 2025
Workshop Problems for 2025-11-21

Problems like these could turn up on Test #5.

- $\int_1^e \frac{\ln(x)}{x} dx$ [Substitute for $\ln(x)$.]
- $\int_1^e x \ln(x) dx$ [Parts with $u = \ln(x)$ and $v' = x$.]
- $\int \frac{\sec^2(x)}{1 + \tan^2(x)} dx$ [Substitute for $\tan(x)$ or – better! – simplify using the identity $\sec^2(x) = 1 + \tan^2(x)$.]
- $\int_0^{\pi/2} x^2 \sin(x) dx$ [Parts with $u = x^2$ and $v' = -\sin(x)$, and parts again with $s = 2x$ and $t' = -\cos(x)$.]
- $\int x^3 e^{x^2} dx$ [Substitute for x^2 and then do parts ...]
- $\int_0^1 x \arctan(x) dx$ [Parts with $u = \arctan(x)$ and $v' = x$, followed by the algebraic trick $\frac{x^2}{1+x^2} = \frac{1+x^2}{1+x^2} - \frac{1}{1+x^2}$.]
- $\int_{-\ln(2)}^0 \frac{e^{-x}}{2 + e^{-x}} dx$ [Substitute for $2 + e^{-x}$ or (less efficient) for e^{-x} .]
- $\int \frac{(\ln(x))^2 - 4}{x(\ln(x) - 2)} dx$ [Factor the numerator, cancel what you can, then substitute for $\ln(x) + 2$ or for $\ln(x)$.]
- $\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$ [Lots of possibilities, the most efficient is probably the “whole hog” substitution $w = \sqrt{e^x + 1}$, though you have to put in some effort to rewrite e^{2x} and dx in terms of w .]
- $\int_{-\pi/2}^{\pi/2} (\cos(x) - \cos^3(x)) dx$ [Factor out a $\cos(x)$, rewrite $1 - \cos^2(x)$ as $\sin^2(x)$, and substitute for $\sin(x)$.]