

Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals

TRENT UNIVERSITY, Fall 2025

Workshop Problems for 2025-09-19

In case they run out of questions, here are some problems (similar to what may appear on the test next week) that you can use for practice in the workshops.

- Find the x -intercepts (if any) and the location of the tip of the parabola $y = x^2 - 2x - 24$. [x -intercepts at $x = -4$ and $x = 6$ and tip at $(1, -25)$.]
- Use the ε - δ definition of limits to verify that $\lim_{x \rightarrow -2} (3x + 2) = -4$. [$\delta = \varepsilon/3$ (or less)]
- Use the ε - δ definition of limits to verify that $\lim_{x \rightarrow 1} (x - 1)^2 = 0$. [$\delta = \sqrt{\varepsilon}$ (or less)]
- Use the practical rules for computing limits to evaluate $\lim_{x \rightarrow 2} \frac{x^2 - x - 2}{x^2 - 5x + 6}$. [= -3]
- Use the practical rules for computing limits to evaluate $\lim_{x \rightarrow -1} \frac{x^2 + 5x + 4}{2x^2 - 8x - 10}$. [= $\frac{1}{4}$]
- Use the practical rules for computing limits to evaluate $\lim_{x \rightarrow 0} \frac{x^2 + 3x}{x^3 + 4x^2 + 17x}$. [= $\frac{3}{17}$]