Mathematics 1110H (Section A) – Calculus I: Limits, Derivatives, and Integrals TRENT UNIVERSITY, Fall 2024

Solutions to Quiz #3 Choice!

Please do *one* (1) of questions **1** and **2**. If you do both, only the first one spotted by the grader will be marked.

1. Use the standard version or the game version of the ε - δ definition of limits to verify that $\lim_{x\to 0} (x+1) \neq 2$. [5]

Hint: If you don't remember the game version of the ε - δ definition of limits from class, or even if you do, see the handout An Alternate Version of the ε - δ Definition of Limits, which you can find in the folder Textbook and Handouts in the Course Content section on Blackboard.

Solution. Recall that the game version of the ε - δ definition of limits is as follows:

The *limit game* for f(x) at x = a with target L is a three-move game played between two players A and B as follows:

- 1. A moves first, picking a small number $\varepsilon > 0$.
- 2. *B* moves second, picking another small number $\delta > 0$.
- 3. A moves third, picking an x that is within δ of a, *i.e.* $a \delta < x < a + \delta$.

To determine the winner, we evaluate f(x). If it is within ε of the target L, *i.e.* $L - \varepsilon < f(x) < L + \varepsilon$, then player B wins; if not, then player A wins.

With this idea in hand, $\lim_{x\to a} f(x) = L$ means that player *B* has a winning strategy in the limit game for f(x) at x = a with target *L*; that is, if *B* plays it right, *B* will win no matter what *A* tries to do. (Within the rules ...:-) Conversely, $\lim_{x\to a} f(x) \neq L$ means that player *A* is the one with a winning strategy in the limit game for f(x) at x = a with target *L*.

To show that $\lim_{x\to 0} (x+1) \neq L = 2$, therefore, we need to demonstrate that player A has a winning strategy in the corresponding limit game. Note that the real limit is $\lim_{x\to 0} (x+1) = 0 + 1 = 1$. Here we go:

Move 1. Player A should play an $\varepsilon > 0$ that is small enough to separate the alleged limit of 2 from the actual limit of 1. Since 2 - 1 = 1, any ε with $0 < \varepsilon < 1$ will do; to keep things as simple as we can, we will have A play $\varepsilon = \frac{1}{2} = 0.5$.

Move 2. The adversary, player B, now plays some $\delta > 0$. We have no control over this ...

Move 3. We will now have player A play $x = 0 - \frac{\delta}{2} = -\frac{\delta}{2}$.

We claim that player A wins no matter what $\delta > 0$ player B chose. First, observe that because $\delta > 0$, we have $-\delta < -\frac{\delta}{2} - 0 < \delta$, so player A's choice of x is valid within the rules of the limit game. Second, note that $f(x) = f\left(-\frac{\delta}{2}\right) = -\frac{\delta}{2} + 1 < 1 < 2 - \frac{1}{2} = L - \varepsilon$, which means that we do not have $L - \varepsilon < f(x) < L + \varepsilon$, so player B loses, which means that player A wins.

Since player A has a winning strategy -i.e. A can win no matter what B does - it follows by the game version of the ε - δ definition of limits that $\lim_{x\to 0} (x+1) \neq 2$.

2. Find a single line which is tangent to each of the curves $y = \sin(x)$, $y = \cos(x)$, $y = \sec(x)$, and $y = x^3 + 1$, though not necessarily to all of them at the same point. Explain why the line you give does the job. [5]

Hint: Draw the graphs of these functions to get an idea of what might work.

SOLUTION. The line y = 1 does the job. It touches the graphs of $y = \cos(x)$, $y = \sec(x)$, and $y = x^3 + 1$ at x = 0, and the graph of $y = \sin(x)$ at $x = \frac{\pi}{7}2$. The line, being horizontal, has slope 0 (everywhere!) and we leave it to the reader to check that $y = \cos(x)$, $y = \sec(x)$, and $y = x^3 + 1$ all have slope 0 at x = 0, and that the graph of $y = \sin(x)$ has slope 0 at $x = \frac{\pi}{2}$.

Following the hint after the fact, here is a graph of all four functions, plus the line y = 0. The y-values for $y = \sec(x)$ and $y = x^3 + 1$ have been restricted to $-1 \le y \le 2$ to keep the scale under control.

It should be apparent from this graph that $y = \sin(x)$, $y = \cos(x)$, and $y = \sec(x)$ all have y = 1 as a tangent line at (nfinitely many) points other than the ones mentioned in the first paragraph above.