
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Section A, Trent University, Fall 2024

Solutions to the Final Examination
11:00-14:00 in the Gym on Tuesday, 10 December.

Instructions: Do both of parts A and B, and, if you wish, part C. Please show all your
work, justify all your answers, and simplify these where you reasonably can. When you
are asked to do k of n questions, only the first k that are not crossed out will be marked.
If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can’t communicate with other devices; all sides of one
letter- or A4-size sheet, with whatever you want written on it; your own brain.

Part A. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any four (4) of a–f. [20 = 4 × 5 each]

a. y = arctan
(
x3
)

b. y = x2e−x c. y = ln (sec(x) + tan(x))

d. y = sec3 (arctan(x)) e. y =
3 + x2

4 + x2
f. y = (sin(x) + cos(x))

2

Solutions. a. Chain and Power Rules.

dy

dx
=

d

dx
arctan

(
x3
)

=
1

1 + (x3)
2 ·

d

dx
x3 =

3x2

1 + x6
�

b. Product, Power, and Chain Rules.

dy

dx
=

d

dx

(
x2e−x

)
=

[
d

dx
x2
]
e−x + x2

[
d

dx
e−x

]
= 2xe−x + x2e−x

d

dx
(−x)

= 2xe−x + x2e−x(−1) = x(2− x)e−x �

c. Chain Rule and algebra.

dy

dx
=

d

dx
ln (sec(x) + tan(x)) =

1

sec(x) + tan(x)
· d
dx

(sec(x) + tan(x))

=
sec(x) tan(x) + sec2(x)

sec(x) + tan(x)
=

sec(x) (tan(x) + sec(x))

sec(x) + tan(x)
= sec(x) �

d. Power and Chain Rules, and a trigonometric identity.

dy

dx
=

d

dx
sec3 (arctan(x)) = 3 sec2 (arctan(x)) · d

dx
arctan(x) = 3 sec2 (arctan(x)) · 1

1 + x2

=
3 sec2 (arctan(x))

1 + x2
=

3
(
1 + tan2 (arctan(x))

)
1 + x2

=
3
(
1 + x2

)
1 + x2

= 3 �
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e. Quotient and Power Rules.

dy

dx
=

d

dx

(
3 + x2

4 + x2

)
=

[
d
dx

(
3 + x2

)] (
4 + x2

)
−
(
3 + x2

) [
d
dx

(
4 + x2

)]
(4 + x2)

2

=
2x
(
4 + x2

)
−
(
3 + x2

)
2x

(4 + x2)
2 =

8x+ 2x3 − 6x− 2x3

(4 + x2)
2 =

2x

(4 + x2)
2 �

f. Simplify first, then a little Chain Rule.

y = (sin(x) + cos(x))
2

= sin2(x) + 2 sin(x) cos(x) + cos2(x) = 1 + sin(2x),

so
dy

dx
=

d

dx
(1 + sin(2x)) = 0 + cos(2x)

d

dx
(2x) = 2 cos(2x) �

f. Power and Chain Rules, and trigonometric identitites.

dy

dx
=

d

dx
(sin(x) + cos(x))

2
= 2 (sin(x) + cos(x))

d

dx
(sin(x) + cos(x))

= 2 (sin(x) + cos(x)) (cos(x)− sin(x)) = 2
(
cos2(x)− sin2(x)

)
= 2 cos(2x) �

2. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫
x√

x2 + 1
dx b.

∫ 1

0

xe−x dx c.

∫
2 ln(x) dx

d.

∫ 1

−1
(x+ 3)3 dx e.

∫
x+ 1

x2 − 1
dx f.

∫ π/2

0

cos(x)

1 + sin2(x)
dx

Solutions. a. Substitution and Power Rule. We will use the substitution w = x2 + 1, so
dw = 2x dx and x dx = 1

2 dw.∫
x√

x2 + 1
dx =

∫
1√
w
· 1

2
dw =

1

2

∫
w−1/2 dw =

1

2
· w

1/2

1/2
+ C = w1/2 + C

=
(
x2 + 1

)1/2
+ C =

√
x2 + 1 + C �

b. Integration by parts. We will use integration by parts with u = x and v′ = e−x, so
u′ = 1 and v = −e−x.∫ 1

0

xe−x dx = x
(
−e−x

)∣∣1
0
−
∫ 1

0

1
(
−e−x

)
dx = 1

(
−e−1

)
− 0

(
−e−0

)
+

∫ 1

0

e−x dx

= −e−1 + 0 +
(
−e−1

)∣∣1
0

= −e−1 +
(
−e−1

)
−
(
−e−0

)
= −2e−1 + 1

= 1− 2

e
�
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c. Integration by parts. We will use integration by parts with u = ln(x) and v′ = 2, so

u′ =
1

x
and v = 2x.

∫
2 ln(x) dx = ln(x) · 2x−

∫
1

x
· 2x dx = 2xln(x)−

∫
2 dx = 2xln(x)− 2x+ C

= 2x (ln(x)− 1) + C �

d. Substitution and Power Rule. We will use the substitution w = x+ 3, so dw = dx and

change the limits of integration as we go along:
x −1 1
w 2 4

.

∫ 1

−1
(x+ 3)3 dx =

∫ 4

2

u3 du =
u4

4

∣∣∣∣4
2

=
44

4
− 24

4
=

256

4
− 16

4
=

240

4
= 60 �

d. Expand and then use the Power Rule. Algebra first!∫ 1

−1
(x+ 3)3 dx =

∫ 1

−1

(
x3 + 9x2 + 27x+ 27

)
dx =

(
x4

4
+

9x3

3
+

27x2

2
+ 27x

)∣∣∣∣1
−1

=

(
14

4
+

9 · 13

3
+

27 · 12

2
+ 27 · 1

)
−
(

(−1)4

4
+

9(−1)3

3
+

27(−1)2

2
+ 27(−1)

)
=

1

4
+ 3 + 13.5 + 27− 1

4
+ 3− 13.5 + 27 = 60 �

e. Simplification, then Substitution. We will end up using the substitution w = x− 1, so
dw = dx.∫

x+ 1

x2 − 1
dx =

∫
x+ 1

(x+ 1)(x− 1)
dx =

∫
1

x− 1
dx =

∫
1

w
dw = ln(w) + C

= ln(x− 1) + C �

f. Substitution. We will use the substitution w = sin(x), so dw = cos(x) dx, and change

the limits of integration as we go along:
x 0 π/2
w 0 1∫ π/2

0

cos(x)

1 + sin2(x)
dx =

∫ 1

0

1

1 + w2
dw = arctan(w)|10 = arctan(1)− arctan(0)

=
π

4
− 0 =

π

4
�
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3. Do any four (4) of a–g. [20 = 4 × 5 each]

a. Compute lim
x→∞

x2e−x.

b. Use the Right-Hand Rule to compute

∫ 2

0

(x+ 1) dx.

c. Use the ε–δ definition of limits to verify that lim
x→2

(2x− 3) = 1.

d. Find the area of the region between y = x1/3 and y = x3, where 0 ≤ x ≤ 1.

e. Determine whether f(x) =

{
x2

|x| x 6= 0

0 x = 0
is continuous at x = 0 or not.

f. Find the volume of the solid obtained by revolving the region between the line
y = 1 and the line y = x, for 0 ≤ x ≤ 1, about the y-axis.

g. Use the limit definition of the derivative to compute g′(x) for g(x) = x2 + x.

Solutions. a. We will use l’Hôpital’s Rule twice.

lim
x→∞

x2e−x = lim
x→∞

x2

ex
→∞
→∞ = lim

x→∞

d
dxx

2

d
dxe

x
= lim
x→∞

2x

ex
→∞
→∞ = lim

x→∞

d
dxx

2

d
dxe

x

= lim
x→∞

2

ex
→ 2
→∞ = 0 �

b. The generic Right-Hand Rule formula for a definite integral is

∫ b

a

f(x) dx = lim
n→∞

[
n∑
i=1

b− a
n
· f
(
a+ i · b− a

n

)]
.

Here a = 0, b = 2, and f(x) = x+ 1, so the Right-Hand Rule formula works out to:

∫ 2

0

(x+ 1) dx = lim
n→∞

[
n∑
i=1

2− 0

n
· f
(

0 + i · 2− 0

n

)]
= lim
n→∞

[
n∑
i=1

2

n
·
(

2i

n
+ 1

)]

= lim
n→∞

[
2

n

n∑
i=1

(
2i

n
+ 1

)]
= lim
n→∞

2

n

[(
n∑
i=1

2i

n

)
+

(
n∑
i=1

1

)]

= lim
n→∞

2

n

[(
2

n

n∑
i=1

i

)
+ n

]
= lim
n→∞

2

n

[
2

n
· n(n+ 1)

2
+ n

]
= lim
n→∞

2

n
[(n+ 1) + n] = lim

n→∞

2

n
[2n+ 1] = lim

n→∞

[
4 +

2

n

]
= 4 + 0 = 4 �

c. To verify that lim
x→2

(2x− 3) = 1 using ε–δ definition of limits, we need to check that for

any ε > 0 we can find a δ > 0 such that if |x − 2| < δ, then |(2x− 3)− 1| < ε. As usual,
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we try to reverse-engineer the required δ from the condition ε is to satisfy. Suppose that
ε > 0. Then:

|(2x− 3)− 1| < ε ⇐⇒ |2x− 4| < ε ⇐⇒ 2|x− 2| < ε ⇐⇒ |x− 2| < ε

2

If we now set δ =
ε

2
, then |x− 2| < δ will imply that |(2x− 3)− 1| < ε because every step

above is reversible.
It follows that lim

x→2
(2x− 3) = 1 by the ε–δ definition of limits. �

d. The two curves intersect when x3 = x1/3, that is, when x9 =
(
x3
)3

=(
x1/3

)3
= x, which is satisfied by the real numbers −1, 0, and 1. Only the

latter two matter here, as we are told that 0 ≤ x ≤ 1 for the given region.
It’s easy to check that between 0 and 1, y = x1/3 is above y = x3; for one
example, at x = 1

2 = 0.5, 0.53 = 0.125 < 0.7937 ≈ 0.51/3. It follows that the area of the
region between the two curves is given by:

Area =

∫ 1

0

(
x1/3 − x3

)
dx =

(
x4/3

4/3
− x4

4

)∣∣∣∣1
0

=

(
3

4
· 14/3 − 14

4

)
−
(

3

4
· 04/3 − 04

4

)
=

3

4
− 1

4
− 0 =

2

4
=

1

2
�

e. We simplify things a little bit first. Whenever x 6= 0, we have
x2

|x|
=
|x|2

|x|
= |x|, and so

f(x) =

{
x2

|x| x 6= 0

0 x = 0
=

{ |x| x 6= 0

0 x = 0
=


−x x < 0

0 x = 0

x x > 0

. As lim
x→0−

f(x) = lim
x→0−

(−x) = 0

and lim
x→0+

f(x) = lim
x→0+

x = 0, we have that lim
x→0

f(x) = 0 = f(0). Thus f(x) is continuous

at x = 0 by the definition of continuity. �

f. Disk/washer method. Since we revolved the region about the
y-axis the disk cross-sections of the solid are perpendicular to the
y-axis, so we should use y as the basic variable. The disk at level
y has radius x− 0 = x = y and hence area πr2 = πy2. Since we
also have 0 ≤ y ≤ 1 for the given region, the volume of the solid
is given by:

V =

∫ 1

0

πr2 dy =

∫ 1

0

πy2 dy = π · y
3

3

∣∣∣∣1
0

= π · 13

3
− π · 03

3
=
π

3
�

f. Cylindrical shell method. Since we revolved the region about the
y-axis the cylindrical cross-sections of the solid are perpendicular to
the x-axis, so we should use x as the basic variable. The cylinder
at x has radius r = x− 0 = x and height h = 1− y = 1− x and so
area 2πrh = 2πx(1− x). Since we are given that 0 ≤ x ≤ 1 for the
given region, the volume of the solid is given by:

5



V =

∫ 1

0

2πrh dx =

∫ 1

0

2πx(1− x) dx = 2π

∫ 1

0

(
x− x2

)
dx = 2π

(
x2

2
− x3

3

)∣∣∣∣1
0

= 2π

(
12

2
− 13

3

)
− 2π

(
02

2
− 03

3

)
= 2π · 1

6
− 2π · 0 =

π

3
�

g. By the limit definition of the derivative,

g′(x) = lim
h→0

g(x+ h)− g(x)

h
= lim
h→0

[
(x+ h)2 + (x+ h)

]
−
[
x2 + x

]
h

= lim
h→0

[
x2 + 2xh+ h2 + x+ h

]
−
[
x2 + x

]
h

= lim
h→0

2xh+ h2 + h

h

= lim
h→0

(2x+ h+ 1) = 2x+ 0 + 1 = 2x+ 1. �

4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase
and decrease, maximum and minimum points, intervals of concavity, and inflection
points of f(x) = x2e−x, and sketch its graph based on this information. [12]

Solution. We run through the indicated checklist . . .

i. Domain. x2 and e−x are both defined (and continuous and differentiable) for all x, and
hence so is their product. Thus f(x) = x2e−x has domain R = (−∞,∞).

ii. Intercepts. f(0) = 02e−0 = 0 · 1 = 0, so the y-intercept is y = 0. Since e−x > 0 for all
x, f(x) = 0 exactly when x2 = 0, i.e. exactly when x = 0, so the only x-intercept is x = 0.
Note that the only x-intercept is also the y-intercept.

iii. Vertical asymptotes. Since f(x) = x2e−x is defined and continuous for all x, it cannot
have any vertical asymptotes.

iv. Horizontal asymptotes. We take the limits as x→ ±∞, with some help from l’Hôpital’s
Rule, and see what happens:

lim
x→−∞

x2e−x = lim
x→−∞

x2

ex
→ +∞
→ 0+

= +∞

lim
x→+∞

x2e−x = lim
x→+∞

x2

ex
→ +∞
→ +∞ = lim

x→+∞

d
dxx

2

d
dxe

x
= lim
x→+∞

2x

ex
→ +∞
→ +∞

= lim
x→+∞

d
dx2x
d
dxe

x
= lim
x→+∞

2

ex
→ 2
→ +∞ = 0+

y = f(x) thus has a horizontal asymptote of y = 0 to the right (i.e. as x → +∞), which
it approaches from above, but does not have one to the left (i.e. as x→ −∞).

v. Increase/decrease & max/min. We first compute f ′(x), using the Product, Power, and
Chain Rules:

f ′(x) =
d

dx

(
x2e−x

)
=

[
d

dx
x2
]
e−x + x2

[
d

dx
e−x

]
= 2xe−x + x2e−x

d

dx
(−x) = x(2− x)e−x

6



Since e−x > 0 for all x, f ′(x) = x(2−x)e−x is positive, zero, or negative exactly when
x(2 − x) is. When x < 0, 2 − x > 0, so x(2 − x) < 0; when x = 0, x(2 − x) = 0; when
0 < x < 2, 2− x > 0, so x(2− x) > 0; when x = 2, x(2− x) = 0; and when x > 2, x > 0
and 2 − x < 0, so x(2 − x) < 0. It follows that f(x) is decreasing on (−∞, 0), increasing
on (0, 2), and decreasing again on (2,+∞), and thus has a local (and absolute) minimum
at x = 0 and a local maximum (which is not absolute) at x = 2. We summarize all this in
the following table:

x (−∞, 0) 0 (0, 2) 2 (2,+∞)
f ′(x) − 0 + 0 +
f(x) ↓ min ↑ max ↓

vi. Concavity and inflection points. We first compute f ′′(x), using the Product, Power,
and Chain Rules:

f ′′(x) =
d

dx

(
x(2− x)e−x

)
=

d

dx

((
2x− x2

)
e−x

)
=

[
d

dx

(
2x− x2

)]
e−x +

(
2x− x2

) [
e−x

]
= (2− 2x)e−x +

(
2x− x2

)
e−x

d

dx
(−x) = (2− 2x)e−x +

(
2x− x2

)
e−x(−1)

=
(
2− 2x+ x2 − 2x

)
e−x =

(
x2 − 4x+ 2

)
e−x =

(
x−

(
2−
√

2
))(

x−
(

2 +
√

2
))

The last step follows because, using the quadratic formula, x2 − 4x+ 2 = 0 exactly when

x =
−(−4)±

√
(−4)2 − 4 · 1 · 2
2 · 1

=
4±
√

16− 8

2
=

4±
√

8

2
=

4± 2
√

2

2
= 2±

√
2.

This also means that f ′′(x) = 0 exactly when x = 2±
√

2. When x < 2−
√

2, x−
(
2−
√

2
)
<

0 and x −
(
2 +
√

2
)
< 0, so f ′′(x) > 0; when 2 −

√
2 < x < 2 +

√
2, x −

(
2−
√

2
)
> 0

and x −
(
2 +
√

2
)
< 0, so f ′′(x) < 0; and when x > 2 +

√
2, x −

(
2−
√

2
)
> 0 and

x−
(
2 +
√

2
)
> 0, so f ′′(x) > 0. This means that y = f(x) is concave up when x < 2−

√
2,

concave down when 2 −
√

2 < x < 2 +
√

2, and concave up again when x > 2 +
√

2, and
thus has inflection points at x = 2±

√
2. We summarize all this in the following table:

x
(
−∞, 2−

√
2
)

2−
√

2
(
2−
√

2, 2 +
√

2
)

2 +
√

2
(
2 +
√

2,+∞
)

f ′′(x) + 0 − 0 +
f(x) ^ infl. _ infl. ^

vii. Graph. Cheating just a bit, we have a computer program called kmplot draw the
graph for us:

�
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Part B. Do any two (2) of 5–7. [28 = 2 × 14 each]

5. The region below y = x2 and above y = 0, where 0 ≤ x ≤ 2, is revolved about the
line x = −1, making a solid of revolution.

a. Sketch the region. [1] b. Find the area of the region. [3]

c. Sketch the solid. [1] d. Find the volume of the solid. [9]

Solutions. a. c.

� �

b. The area of the region is

A =

∫ 2

0

(
x2 − 0

)
dx =

∫ 2

0

x2 dx =
x3

3

∣∣∣∣2
0

=
23

3
− 03

3
=

8

3
− 0 =

8

3
. �

d. Disk/washer method. Since we revolved the region about a
vertical line, washer cross-sections of the solid are perpendicular
to the y-axis, so we use y as the basic variable. The washer at
level y has outer radius R = 2− (−1) = 3 (since the right edge
of the region is the line x = 2) and inner radius r = x− (−1)
= x+ 1 = 1 +

√
y (as the left edge is the parabola y = x2). It

therefore has area equal to π
(
R2 − r2

)
= π

(
32 −

(
1 +
√
y
)2)

= π
(
9−

(
1 + 2

√
y + y

))
= π

(
8− 2

√
y − y

)
. Note also that 0 ≤ y ≤ 4 over the given

region. The volume of the solid is then given by:

V =

∫ 4

0

π
(
R2 − r2

)
dy =

∫ 4

0

π (8− 2
√
y − y) dy = π

∫ 4

0

(
8− 2y1/2 − y

)
dy

= π

(
8y − 2y3/2

3/2
− y2

2

)∣∣∣∣4
0

= π

(
8y −

4y
√
y

3
− y2

2

)∣∣∣∣4
0

= π

(
8 · 4− 4 · 4

√
4

3
− 42

2

)
− π

(
8 · 0− 4 · 0

√
0

3
− 02

2

)
= π

(
32− 32

3
− 16

2

)
− π · 0

= π

(
32− 32

3
− 8

)
= π

(
24− 32

3

)
= π

(
72

3
− 32

3

)
=

40π

3
�
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d. Cylindrical shell method. Since we revolved the region about
a vertical line, the cylindrical cross-sections of the solid are
perpendicular to the x-axis, so we use x as the basic variable.
The cylinder at x has radius r = x− (−1) = x+ 1 and height
h = y − 0 = x2, and therefore has area 2πrh = 2π(x+ 1)x2 =
2π
(
x3 + x2

)
. Recall that we are given that 0 ≤ x ≤ 2 for the

original region. Thus the volume of the solid is given by:

V =

∫ 2

0

2πrh =

∫ 2

0

2π
(
x3 + x2

)
dx = 2π

(
x4

4
+
x3

3

)∣∣∣∣2
0

= 2π

(
24

4
+

23

3

)
− 2π

(
04

4
+

03

3

)
= 2π

(
4 +

8

3

)
− 2π · 0

= 2π

(
12

3
+

8

3

)
− 0 = 2π · 20

3
=

40π

3
�

6. A 5 m long ladder is flush up against a vertical wall at first. Its bottom then slides on
the horizontal floor away from the wall, the top and bottom of the ladder maintaining
contact with the wall and floor, respectively, until the ladder rests on the floor. What
is the maximum area of the triangle made by the wall, floor, and ladder during this
process? [14]

Solution. The triangle made by the wall, floor, and ladder at any
given instant is a right triangle, because the wall and floor are
perpendicular to each other, with the ladder as its hypotenuse. Let
y be the height of this triangle and x its base, so x2 + y2 = 25 by
the Pythagorean Theorem. We can solve this equation for y in
terms of x: y2 = 25− x2, so y =

√
25− x2 – we use the positive root

because y is a length and hence y ≥ 0. Note that the possible values of x are between 0
(at the start of the slide) and 5 (at the end of the slide), inclusive. We can now express

the area of the triangle as a function of x: A(x) =
1

2
xy =

1

2
x
√

25− x2.

We maximize A(x) for 0 ≤ x ≤ 5. First, with the help of the Product, Power, and
Chain Rules, we compute A′(x):
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A′(x) =
d

dx

(
1

2
x
√

25− x2
)

=
1

2

[
d

dx
x

]√
25− x2 +

1

2
x

[
d

dx

√
25− x2

]
=

1

2
· 1
√

25− x2 +
1

2
x · 1

2
√

25− x2
·
[
d

dx

(
25− x2

)]
=

1

2

√
25− x2 +

1

2
· x

2
√

25− x2
(−2x) =

1

2

[√
25− x2 − x2√

25− x2

]
Second, we find the critical points of A(x) in the interval [0, 5]:

A′(x) = 0 =⇒
√

25− x2 − x2√
25− x2

= 0 =⇒
(√

25− x2
)2
− x2 = 0

=⇒ 25− x2 − x2 = 0 =⇒ 25− 2x2 = 0 =⇒ x2 =
25

2
=⇒ x = ± 5√

2

x = − 5√
2

is not between 0 and 5, while x = +
5√
2

is, so we only need to consider the

latter critical point.
Third, we compare the areas at the endpoints with the area at the critical point to

see which is the largest.

A(0) =
1

2
· 0 ·

√
25− 02 = 0

A(5) =
1

2
· 5 ·

√
25− 52 =

5

2
· 0 = 0

A

(
5√
2

)
=

1

2
· 5√

2
·

√
25−

(
5√
2

)2

=
1

2
· 5√

2
·
√

25− 25

2

=
1

2
· 5√

2
·
√

25

2
=

1

2
· 5√

2
· 5√

2
=

25

4

Thus the maximum possible area of the triangle formed by the ladder, wall, and floor

is
25

4
= 6.25. (That area is in m2, if you care about the units, since the length of the

ladder was given in m.) �
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7. A vertical post 2 m tall stands on level ground 2 m from a vertical wall. Stick Person
stands with a lantern that is 2 m from the post. Stick raises the lantern vertically
at 1 m/s. How is the length of the shadow, as cast by the post onto the wall by the
lantern’s light, changing at the instant that the lantern is 1 m above the ground? [14]

Solution. Let s be the length of the shadow cast by the post on the wall, and let h be
the height the lantern is above the ground, as in the modified diagram above right. We

are told that
dh

dt
= 1 m/s and asked to compute

ds

dt
at the instant that h = 1 m.

Consider the two right triangles formed by the beam from the lantern, the horizontal
line h m above the ground, and the portions of the wall and post, respectively, between
the beam and the horizontal line. These triangles are similar, i.e. they have the same

proportions, so the ratios of their heights to their bases must be the same:
s− h

4
=

2− h
2

.

It then follows that s−h = 4− 2h, so s = 4−h, and from this that
ds

dt
= −dh

dt
= −1 m/s.

Thus the length of the shadow is changing by −1 m/s, i.e. it is decreasing at rate of
1 m/s. Note that the information that h = 1 m at the given instant isn’t necessary here;

you only need to know that
dh

dt
= 1 m/s. �

[Total = 100]
Part C. Bonus points! Do one or both of 232323 and 323232.

232323. Write an original haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of

syllables in lines

323232. Verify that ln (sec(x)− tan(x)) = −ln (sec(x) + tan(x)). [1]

You’re on your own for the bonus problems!

Apologies for all the glitches this term. Have a good break!
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