MATH1110H-B-lab-F02-2023-10-03

October 3, 2023
[1](!%5B%5D(./images/802783f800876f38e22d3bae8042ff5e_1230_2299_344_1787.jpg)):

```
# MATH 1110H-B F02 Lab 2023-10-23
#
# Wherein we add a couple of tricks to our knowledge of the plot command,
# learn how to solve equations, and get started on solving differential
# equations too.
#
# First new plotting trick: chage the colour of the graph to something
# other than the default blue:
#
plot(x^3,-2,2, color='red')
```

[2]: $\mathrm{p} 1=\mathrm{plot}\left(\mathrm{x}^{\wedge} 0,-2,2\right.$, color='green') \# Second trick: give a plot a name,
[3]: p1 \# and then display it directly
[3]:

[4]: show(p1) \# or by using the show command.

[5]: $\mathrm{p} 2=\operatorname{plot}\left(\mathrm{x}^{\wedge} 3,-2,2\right.$, color='red') \# We give another plot a name.
[6]: p1 + p2 \# Third trick: add the plots to superimpose them:
[6]:

[7]:

```
solve( x^2 == 2, x ) # The solve command lets us find solutions
    # to equations, but you must specify the
    # variable to be solved for, even if it is
    # the only one in the equation.
```

[7]: [x == -sqrt(2), x == sqrt(2)]
[8]:

```
solve( x^2 == -2, x ) # The solve command will find complex-valued
    # solutions, too. Note that I is used to
    # represent the square root of -1.
```

[8]: [x == -I*sqrt(2), x == I*sqrt(2)]
[9]:

```
solve( sqrt(x) == x, x ) # One weakness of the solve command is that
# will give you a lazy and useless solution
# if it can find an x by itself in an
    # equation which isn't polynomial.
```

[9]: [x == sqrt(x)]
[10]:

```
solve ( }\textrm{x}==\mp@subsup{\textrm{x}}{}{\wedge}(1/2),\textrm{x}) # Writing a square root as a fractional
# power doesn't help...
```

[10]: [x == sqrt(x)]
[11]:

solve $\left(\mathrm{x}==\mathrm{x}^{\wedge} 2, \mathrm{x}\right)$	\# ... but putting in a bit of effort yourself
	\# to rewrite the eqution to eliminate that
	\# fractional power lets SageMath take it the
	\# rest of the way.

[11]: $\quad[x==0, x==1]$
[12]: solve($\cos (x)==5, x)$ \# You acn use the solve command to try to \# where a function takes on certain values, \# but the symbolic answers don't always make \# sense. In this example 5 is not in the \# domain of arccos. (Its domain is [-1.1].)
[12]: [x == $\arccos (5)]$
[13]:

```
N(arccos(5)) # Using the N command, which tries to find a decimal
# approximation, makes the problem above apparent:
# the result NaN means "Not a Number".
```


[13]: NaN

[14]:
$N(\sin (1 / 2))$ \# N can be used to get decimal answers like a calculator.
[14]: 0.479425538604203
[15]: var("y") \# We need to declare y to be variable before we can use it. solve(sinh (y) == x, y) \# Here we try to invert sinh using the solve \# command.
[15]: [y == $\operatorname{arcsinh}(x)]$
[16]: solve($\mathrm{x}==\left(\mathrm{e}^{\wedge} \mathrm{y}-\mathrm{e}^{\wedge}(-\mathrm{y})\right) / 2$, y$)$ \# To actually get an expression \# for arcsinh, we need to start \# with the definition of sinh.
\# Note that the first expression given for arcsinh makes no sense \# for any real number x because $x-\operatorname{sqrt}\left(x^{`} 2-1\right)<0$ for all real x \# and logatrithms are only defined for positive real numbers.
[16]: $\left[y==\log \left(x-\operatorname{sqrt}\left(x^{\wedge} 2+1\right)\right), y==\log \left(x+\operatorname{sqrt}\left(x^{\wedge} 2+1\right)\right)\right]$
[17]: $\mathrm{y}=$ function('y')(x) \# This is how to declare y to be an unspecified \# function of x so it can be differentiated. desolve($\operatorname{diff}(\mathrm{y}, \mathrm{x})==7 * \mathrm{x}, \mathrm{y})$ \# We can now write $\operatorname{diff}(\mathrm{y}, x)$ for the \# derivative of y with respect to x, \# and use this to set up a differential equation that the desolve \# command will try to solve for y. The desolve command is optimized \# for dealing with differential equations, which the basic solve

```
# command is not, but also needs to be told which "variable" is to
# be solved for. Note that the answer is given up to a generic
# constant _C since there is not enough information to pin it down
# any further.
```

[17]: 7/2*x^2 + _C
[18] :

```
desolve( diff(y,x) == 7*x, y, ics=[-7,18] ) # Such additional
# information is often
# supplied by specifying "initial conditions" that the solution to
# the given initial condition is to satisfy. In this case, the
# clause ics=[0.1] specifies that when }x=0\mathrm{ , we should have y = 1.
# This pins down the generic constant to a particular value.
```

[18]: 7/2*x^2 - 307/2
[19]:

```
# One thing I forgot to do in this lab is show how to use SageMath
# to compute limits. The limit of sin( ( ^ 2) as x approaches 13, for
# example, can be computed as follows using the lim command:
#
lim( sin(x^2), x=13 )
```

[19]: $\sin (169)$
[20]: $N(\sin (169))$ \# The N command gives us a probably more useful number.
[20]: -0.601999867677605
[21](0):

```
lim( 1/sinh(x), x=oo ) # The lim command can also be used to compute
    # limits as x goes to infinity or -infinity.
    # Note the use of a double lower-case o,
    # that is oo, to represent infinity.
```

[22]:

```
# That's all for now!
```

