
MATH1110H-B-lab-F02-2023-10-03

October 3, 2023

[1]: # MATH 1110H-B F02 Lab 2023-10-23
#
Wherein we add a couple of tricks to our knowledge of the plot command,
learn how to solve equations, and get started on solving differential
equations too.
#
First new plotting trick: chage the colour of the graph to something
other than the default blue:
#
plot(x^3,-2,2,color='red')

[1]:

1

[2]: p1 = plot(x^0,-2,2,color='green') # Second trick: give a plot a name,

[3]: p1 # and then display it directly

[3]:

[4]: show(p1) # or by using the show command.

2

[5]: p2 = plot(x^3,-2,2,color='red') # We give another plot a name.

[6]: p1 + p2 # Third trick: add the plots to superimpose them:

[6]:

3

[7]: solve(x^2 == 2, x) # The solve command lets us find solutions
to equations, but you must specify the
variable to be solved for, even if it is
the only one in the equation.

[7]: [x == -sqrt(2), x == sqrt(2)]

[8]: solve(x^2 == -2, x) # The solve command will find complex-valued
solutions, too. Note that I is used to
represent the square root of -1.

[8]: [x == -I*sqrt(2), x == I*sqrt(2)]

[9]: solve(sqrt(x) == x, x) # One weakness of the solve command is that
will give you a lazy and useless solution
if it can find an x by itself in an
equation which isn't polynomial.

[9]: [x == sqrt(x)]

[10]: solve (x == x^(1/2), x) # Writing a square root as a fractional
power doesn't help...

[10]: [x == sqrt(x)]

4

[11]: solve(x == x^2, x) # ... but putting in a bit of effort yourself
to rewrite the eqution to eliminate that
fractional power lets SageMath take it the
rest of the way.

[11]: [x == 0, x == 1]

[12]: solve(cos(x) == 5, x) # You acn use the solve command to try to
where a function takes on certain values,
but the symbolic answers don't always make
sense. In this example 5 is not in the
domain of arccos. (Its domain is [-1.1].)

[12]: [x == arccos(5)]

[13]: N(arccos(5)) # Using the N command, which tries to find a decimal
approximation, makes the problem above apparent:
the result NaN means "Not a Number".

[13]: NaN

[14]: N(sin(1/2)) # N can be used to get decimal answers like a calculator.

[14]: 0.479425538604203

[15]: var("y") # We need to declare y to be variable before we can use it.
solve(sinh(y) == x, y) # Here we try to invert sinh using the solve

command.

[15]: [y == arcsinh(x)]

[16]: solve(x == (e^y - e^(-y))/2, y) # To actually get an expression
for arcsinh, we need to start
with the definition of sinh.

Note that the first expression given for arcsinh makes no sense
for any real number x because x - sqrt(x^2 - 1) < 0 for all real x
and logatrithms are only defined for positive real numbers.

[16]: [y == log(x - sqrt(x^2 + 1)), y == log(x + sqrt(x^2 + 1))]

[17]: y = function('y')(x) # This is how to declare y to be an unspecified
function of x so it can be differentiated.

desolve(diff(y,x) == 7*x, y) # We can now write diff(y,x) for the
derivative of y with respect to x,

and use this to set up a differential equation that the desolve
command will try to solve for y. The desolve command is optimized
for dealing with differential equations, which the basic solve

5

command is not, but also needs to be told which "variable" is to
be solved for. Note that the answer is given up to a generic
constant _C since there is not enough information to pin it down
any further.

[17]: 7/2*x^2 + _C

[18]: desolve(diff(y,x) == 7*x, y, ics=[-7,18]) # Such additional
information is often

supplied by specifying "initial conditions" that the solution to
the given initial condition is to satisfy. In this case, the
clause ics=[0.1] specifies that when x = 0, we should have y = 1.
This pins down the generic constant to a particular value.

[18]: 7/2*x^2 - 307/2

[19]: # One thing I forgot to do in this lab is show how to use SageMath
to compute limits. The limit of sin(x^2) as x approaches 13, for
example, can be computed as follows using the lim command:
#
lim(sin(x^2), x=13)

[19]: sin(169)

[20]: N(sin(169)) # The N command gives us a probably more useful number.

[20]: -0.601999867677605

[21]: lim(1/sinh(x), x=oo) # The lim command can also be used to compute
limits as x goes to infinity or -infinity.
Note the use of a double lower-case o,
that is oo, to represent infinity.

[21]: 0

[22]: # That's all for now!

6

