
MATH1110H-B-lab-F02-2023-10-03

October 3, 2023

[1]: # MATH 1110H-B F02 Lab 2023-10-23
#
# Wherein we add a couple of tricks to our knowledge of the plot command,
# learn how to solve equations, and get started on solving differential
# equations too.
#
# First new plotting trick: chage the colour of the graph to something
# other than the default blue:
#
plot(x^3,-2,2,color='red')

[1]:

1



[2]: p1 = plot(x^0,-2,2,color='green') # Second trick: give a plot a name,

[3]: p1 # and then display it directly

[3]:

[4]: show(p1) # or by using the show command.

2



[5]: p2 = plot(x^3,-2,2,color='red') # We give another plot a name.

[6]: p1 + p2 # Third trick: add the plots to superimpose them:

[6]:
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[7]: solve( x^2 == 2, x ) # The solve command lets us find solutions
# to equations, but you must specify the
# variable to be solved for, even if it is
# the only one in the equation.

[7]: [x == -sqrt(2), x == sqrt(2)]

[8]: solve( x^2 == -2, x ) # The solve command will find complex-valued
# solutions, too. Note that I is used to
# represent the square root of -1.

[8]: [x == -I*sqrt(2), x == I*sqrt(2)]

[9]: solve( sqrt(x) == x, x ) # One weakness of the solve command is that
# will give you a lazy and useless solution
# if it can find an x by itself in an
# equation which isn't polynomial.

[9]: [x == sqrt(x)]

[10]: solve ( x == x^(1/2), x ) # Writing a square root as a fractional
# power doesn't help...

[10]: [x == sqrt(x)]
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[11]: solve( x == x^2, x ) # ... but putting in a bit of effort yourself
# to rewrite the eqution to eliminate that
# fractional power lets SageMath take it the
# rest of the way.

[11]: [x == 0, x == 1]

[12]: solve( cos(x) == 5, x ) # You acn use the solve command to try to
# where a function takes on certain values,
# but the symbolic answers don't always make
# sense. In this example 5 is not in the
# domain of arccos. (Its domain is [-1.1].)

[12]: [x == arccos(5)]

[13]: N(arccos(5)) # Using the N command, which tries to find a decimal
# approximation, makes the problem above apparent:
# the result NaN means "Not a Number".

[13]: NaN

[14]: N(sin(1/2)) # N can be used to get decimal answers like a calculator.

[14]: 0.479425538604203

[15]: var("y") # We need to declare y to be variable before we can use it.
solve(sinh(y) == x, y ) # Here we try to invert sinh using the solve

# command.

[15]: [y == arcsinh(x)]

[16]: solve( x == (e^y - e^(-y))/2, y ) # To actually get an expression
# for arcsinh, we need to start
# with the definition of sinh.

# Note that the first expression given for arcsinh makes no sense
# for any real number x because x - sqrt(x^2 - 1) < 0 for all real x
# and logatrithms are only defined for positive real numbers.

[16]: [y == log(x - sqrt(x^2 + 1)), y == log(x + sqrt(x^2 + 1))]

[17]: y = function('y')(x) # This is how to declare y to be an unspecified
# function of x so it can be differentiated.

desolve( diff(y,x) == 7*x, y ) # We can now write diff(y,x) for the
# derivative of y with respect to x,

# and use this to set up a differential equation that the desolve
# command will try to solve for y. The desolve command is optimized
# for dealing with differential equations, which the basic solve
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# command is not, but also needs to be told which "variable" is to
# be solved for. Note that the answer is given up to a generic
# constant _C since there is not enough information to pin it down
# any further.

[17]: 7/2*x^2 + _C

[18]: desolve( diff(y,x) == 7*x, y, ics=[-7,18] ) # Such additional
# information is often

# supplied by specifying "initial conditions" that the solution to
# the given initial condition is to satisfy. In this case, the
# clause ics=[0.1] specifies that when x = 0, we should have y = 1.
# This pins down the generic constant to a particular value.

[18]: 7/2*x^2 - 307/2

[19]: # One thing I forgot to do in this lab is show how to use SageMath
# to compute limits. The limit of sin(x^2) as x approaches 13, for
# example, can be computed as follows using the lim command:
#
lim( sin(x^2), x=13 )

[19]: sin(169)

[20]: N(sin(169)) # The N command gives us a probably more useful number.

[20]: -0.601999867677605

[21]: lim( 1/sinh(x), x=oo ) # The lim command can also be used to compute
# limits as x goes to infinity or -infinity.
# Note the use of a double lower-case o,
# that is oo, to represent infinity.

[21]: 0

[22]: # That's all for now!
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