
MATH1110H-B-lab-F01-2023-10-10

October 11, 2023

[1]: # MATH 1110H-B Lab 2023-10-10
#
Our objective is to learn to solve (simple!) differential equations
using SageMath. To do this, we need to be able to declare a generic
function, be able to take derivatives of functions, generic or
otherwise, and solve equations including such derivatives.
#
We first declare y to be a generic function of x:
#
y = function('y')(x) # y = function('y',x) should work, too.
#
diff(y,x) represents the derivative of y with respect to x, and the
desolve command is optimized to solve equations involving derivatives.
Note that as with the basic solve command, desolve needs to be told
explicitly what to solve for.
#
desolve(diff(y,x) == x^2,y)
#
Note the generic constant _C in the answer provided by desolve.

[1]: 1/3*x^3 + _C

[2]: # In most applications of differential equations we are also given
requirements along the lines of "when x= we should have y= ". These
are called "initial conditions" and can be specified in desolve by
adding ics[<x-value>,<y-value>]. For example, if we were to specify
that when x=4 we should have y=4 in the example above, we would type
in:
#
desolve(diff(y,x) == x^2,y,ics=[4,4])
#
Note that desolve then gives what was formerly a generic constant an
explicit value.

[2]: 1/3*x^3 - 52/3

1

[3]: diff(sin(x^2),x) # One can also use the diff operator to just take
the derivative of a function...

[3]: 2*x*cos(x^2)

[4]: diff(sin(x^2),x,2) # ... or its second derivatives, i.e. the
derivative of the derivative.

[4]: -4*x^2*sin(x^2) + 2*cos(x^2)

[5]: desolve(diff(y,x) == y^2, y) # desolve can also cope with equations
where y also appears outside the
derivative, though you may need to do
a bit more work to actually finish
solving for y.

[5]: -1/y(x) == _C + x

[6]: desolve(diff(y,x) == y^2, y, ics=[500,2]) # Again, we can pin down the
generic constant by giving
initial conditions, in this
case y=2 when x=500.

[6]: -1/y(x) == x - 1001/2

[7]: N(sin(169)) # One little bonus trick: if you need or prefer a decimal
a decimal approximation to some expression that gives a
number, use the N command to get 15 digits of accuracy.

[7]: -0.601999867677605

[]:

2

