MATH1110H-B-lab-F01-2023-10-10

October 11, 2023
[1]:

```
# MATH 1110H-B Lab 2023-10-10
#
# Our objective is to learn to solve (simple!) differential equations
# using SageMath. To do this, we need to be able to declare a generic
# function, be able to take derivatives of functions, generic or
# otherwise, and solve equations including such derivatives.
#
# We first declare y to be a generic function of x:
#
y = function('y')(x) # y = function('y',x) should work, too.
#
# diff(y,x) represents the derivative of }y\mathrm{ with respect to }x\mathrm{ , and the
# desolve command is optimized to solve equations involving derivatives.
# Note that as with the basic solve command, desolve needs to be told
# explicitly what to solve for.
#
desolve(diff(y,x) == x^2,y)
#
# Note the generic constant _C in the answer provided by desolve.
```

[1]: $1 / 3 * x^{\wedge} 3+{ }_{-} C$
[2] :

```
# In most applications of differential equations we are also given
# requirements along the lines of "when x= we should have y= ". These
# are called "initial conditions" and can be specified in desolve by
# adding ics[<x-value>,<y-value>]. For example, if we were to specify
# that when }x=4\mathrm{ we should have y=4 in the example above, we would type
# in:
#
desolve(diff(y,x) == x^2,y,ics=[4,4])
#
# Note that desolve then gives what was formerly a generic constant an
# explicit value.
```

[2]: $1 / 3 * x^{\wedge} 3-52 / 3$
[3]:

```
diff(sin(x^2),x) # One can also use the diff operator to just take
    # the derivative of a function...
```

[3] :
$2 * x * \cos \left(x^{\wedge} 2\right)$
[4]:

```
diff(sin(x~2),x,2) # ... or its second derivatives, i.e. the
# derivative of the derivative.
```

[4]: $-4 * x^{\wedge} 2 * \sin \left(x^{\wedge} 2\right)+2 * \cos \left(x^{\wedge} 2\right)$
[5] :

```
desolve(diff(y,x) == y^2, y) # desolve can also cope with equations
# where y also appears outside the
# derivative, though you may need to do
# a bit more work to actually finish
# solving for y.
```

[5]: $-1 / y(x)==\quad C+x$
[6]:

```
desolve(diff(y,x) == y^2, y, ics=[500,2]) # Again, we can pin down the
# generic constant by giving
# initial conditions, in this
# case y=2 when }x=500
```

[6]: $-1 / y(x)==x-1001 / 2$
[7]: N(sin(169)) \# One little bonus trick: if you need or prefer a decimal \# a decimal approximation to some expression that gives a \# number, use the N command to get 15 digits of accuracy.
[7]: -0.601999867677605
[]: \square

