MATH1110H-B-lab-2023-11-14-F01

November 21, 2023
[1]:

```
# MATH 1110H-B Lab F01 2023-11-14
#
# In this lab, we introduce the sum command, which allows us to
# compute finite and infinite sums. We need to declare a suitable
# variable, in this case n. Note that discrete (i.e. integer)
# tend to be chosen form the middle of the alphabet (more or less
# i to n, and sometimes p and q, especially for prime numbers).
# [We also introduce the integral command near the end.]
#
var('k')
#
# The following command adds up 1/k`2 for all k from 1 to 2:
#
sum(1/k^2,k,1,2)
```

[1]: $5 / 4$
[2]:

```
# This one adds up 1/k`2 for all k from 1 to 100:
#
sum(1/k^2,k,1,100)
#
# # Note that SageMath delivers the answer as a giant fraction...
```

[2] :
15895086941330378731122979285175538597023834985437098598894328348038181310903699 01/97218614443438103058965797667262314416197558399574624178272035470551798616524 8000
[3](1.63498390018489) :

```
# ... though one could use the N command to get a decimal approximation.
#
N(sum(1/k^2,k,1,100))
```

[4](1/6*pi~2) :

```
# One can also use the sum command to add up infinitely many terms:
#
sum(1/k~2,k,1,oo)
```

[5]:

```
# One can also define functions of a discrete variable, in this case
# using the sum command.
#
var('n')
s = function('s')(n)
s(n) = sum(1/k^2,k,1,n)
```

[6] :

```
# This cann be used to get the same sum as above:
#
s(100)
```

[6] : 15895086941330378731122979285175538597023834985437098598894328348038181310903699 $01 / 97218614443438103058965797667262314416197558399574624178272035470551798616524$ 8000
[7]:

```
# In principle, one take take their limits too. The limit as n goes
# to infinity of the function defined above should be the same as the
# infinite sum above, but SageMath punts on the this computation.
#
limit(s(n),n=oo)
```

[7]: limit(harmonic_number(n, 2), n, +Infinity)
[8] :

```
# It doesn't always punt in this way. With a different function...
#
t = function('t')(n)
t(n) = sum(1/2^k,k,1,n)
t(10)
```

[8] : 1023/1024
[9](1) :

```
# ... Sagemath works out the limit correctly.
#
limit(t(n),n=00)
```

[10](20/3):

```
# The sum command has a similar syntax to the integral command:
#
integral(x^2-1,x,1,3)
```

[11](200/3):

```
# And again, integrating the same function, but with over a larger
# interval#
#
integral(x^2-1,x,1,6)
```

[]:

