MATH1110H-B-lab-2023-09-26-F01

October 3, 2023
[1]:

```
# MATH 1110H-B F02 Lab 2023-09-19
#
# Wherein we colour our grpahs, add up plots, and learn about the
# lim and solve commands.
p1 = plot(sech(x),-4,4,color='red') # We can change the colour of
    # the graph by specifying one
    # other than the default blue.
    # We can also give a plot a
    # name instead of displaying
    # it immediately.
```

[2]: p1 \# We can then display the named plot just by typing its name...
[2]:

[3]: show(p1) \# ... or by using the show command.

[4]: p2 $=\operatorname{plot}\left(1 /\left(1+\mathrm{x}^{\wedge} 2\right),-4,4\right.$, color='green') \# Another named plot with \# another colour.
[5]:

```
p1 + p2 # We can display the two plots simultaneously simply by
    # adding them.
```

[5] :

[6](0):

```
lim(sech(x),x=-oo) # We can compute limits in SageMath using the
# lim command. Note that one has to specify
# with respect to which variable the limit is
# taken as well as using oo for infinity.
```

[7]: $\lim (\operatorname{sech}(\mathrm{x}), \mathrm{x}=56)$ \# One can, of course, also take limits at a \# point.
[7]: 2*e^56/(e^112 + 1)
[8]: N(2*e^56/(e^112 + 1)) \# As a small bonus, if you want a decimal \# approximation to the exact answer, the N \# command will do that for you.
[8]: 9.56178576777094e-25
[10]: solve($x^{\wedge} 2==30, x$) \# The solve command lets you solve equations.
\# Note that you have to specify which variable
\# to solve for, even if there is only one...
[10]: [x == -sqrt(30), x == sqrt(30)]
[11]:

solve $\left(\mathrm{x}^{\wedge} 2+1==\mathrm{x}, \mathrm{x}\right)$	\# Solve will not hesitate to give you
	\# complex solutions. It represents the
	\# square root of -1 by I when the solution
	\# is a complex number.

[11]: $[x==-1 / 2 * I * \operatorname{sqrt}(3)+1 / 2, x==1 / 2 * I * \operatorname{sqrt}(3)+1 / 2]$
[12]:

```
solve(sqrt(x) + 1 == x, x) # One weakness of the solve command is
# that it tends to give you a lazy and
# useless solution when the equation is
# not a polynomial one and x is easy to
# isolate.
```

[12]: [x == sqrt(x) + 1]
[13]:

```
solve(sqrt(x) + 1 - x == 0, x) # Small rearrangements won't fix the
# problem...
```

[13]: [x == sqrt(x) + 1]
[15]:

```
solve( x == (x-1)^2, x ) # ... but doing some preliminary work by
# hand to eliminate the square root and
# recast the equation as a polynomial
    # equation will do the job.
```

[15]: [x == -1/2*sqrt(5) $+3 / 2$, $x==1 / 2 * s q r t(5)+3 / 2]$
[16]:

```
var("y") # We'll need another variable for what is to follow.
solve(y == sech(x), y) # Asking for the solution y to }y=\operatorname{sech}(x
    # is kind of redundant...
```

[16]: [y == $\operatorname{sech}(x)]$
[17]:

```
solve( x == sech(y), y) # ... but asking for the solution y to
# x = sech(y) solves for y the as the
# inverse function, arcsech, to sech.
```

[17]: [y == $\operatorname{arcsech}(x)]$
[18]:

```
solve( x == 1/(e^y + e^(-y)), y) # If you actually want a formula
    # for arcsech, you ask SageMath
    # to solve x = sech(y) using the
    # formula for sech. Note that you
    # two possible answers - each is
    # the inverse of a different part
    # of sech.
```

[18]: $\left[y==\log \left(-1 / 2 * \operatorname{sqrt}\left(-4 * x^{\wedge} 2+1\right) / x+1 / 2 / x\right), y==\log \left(1 / 2 * \operatorname{sqrt}\left(-4 * x^{\wedge} 2+1\right) / x+\right.\right.$ 1/2/x)]
[19]: solve($\sin (\mathrm{x})==1, \mathrm{x})$ \# One last example, using the solve command \# to find where $\sin (x)=1$. Note that it \# one of the infinitely many possible values \# of x.
[19]: [x == 1/2*pi]
[]: \# That's all, folks!

