
MATH1110H-B-lab-2023-09-26-F01

October 3, 2023

[1]: # MATH 1110H-B F02 Lab 2023-09-19
#
Wherein we colour our grpahs, add up plots, and learn about the
lim and solve commands.

p1 = plot(sech(x),-4,4,color='red') # We can change the colour of
the graph by specifying one
other than the default blue.
We can also give a plot a
name instead of displaying
it immediately.

[2]: p1 # We can then display the named plot just by typing its name...

[2]:

1

[3]: show(p1) # ... or by using the show command.

[4]: p2 = plot(1/(1+x^2),-4,4,color='green') # Another named plot with
another colour.

[5]: p1 + p2 # We can display the two plots simultaneously simply by
adding them.

[5]:

2

[6]: lim(sech(x),x=-oo) # We can compute limits in SageMath using the
lim command. Note that one has to specify
with respect to which variable the limit is
taken as well as using oo for infinity.

[6]: 0

[7]: lim(sech(x),x=56) # One can, of course, also take limits at a
point.

[7]: 2*e^56/(e^112 + 1)

[8]: N(2*e^56/(e^112 + 1)) # As a small bonus, if you want a decimal
approximation to the exact answer, the N
command will do that for you.

[8]: 9.56178576777094e-25

[10]: solve(x^2 == 30,x) # The solve command lets you solve equations.
Note that you have to specify which variable
to solve for, even if there is only one...

[10]: [x == -sqrt(30), x == sqrt(30)]

3

[11]: solve(x^2 + 1 == x, x) # Solve will not hesitate to give you
complex solutions. It represents the
square root of -1 by I when the solution
is a complex number.

[11]: [x == -1/2*I*sqrt(3) + 1/2, x == 1/2*I*sqrt(3) + 1/2]

[12]: solve(sqrt(x) + 1 == x, x) # One weakness of the solve command is
that it tends to give you a lazy and
useless solution when the equation is
not a polynomial one and x is easy to
isolate.

[12]: [x == sqrt(x) + 1]

[13]: solve(sqrt(x) + 1 - x == 0, x) # Small rearrangements won't fix the
problem...

[13]: [x == sqrt(x) + 1]

[15]: solve(x == (x-1)^2, x) # ... but doing some preliminary work by
hand to eliminate the square root and
recast the equation as a polynomial
equation will do the job.

[15]: [x == -1/2*sqrt(5) + 3/2, x == 1/2*sqrt(5) + 3/2]

[16]: var("y") # We'll need another variable for what is to follow.
solve(y == sech(x), y) # Asking for the solution y to y = sech(x)

is kind of redundant...

[16]: [y == sech(x)]

[17]: solve(x == sech(y), y) # ... but asking for the solution y to
x = sech(y) solves for y the as the
inverse function, arcsech, to sech.

[17]: [y == arcsech(x)]

[18]: solve(x == 1/(e^y + e^(-y)), y) # If you actually want a formula
for arcsech, you ask SageMath
to solve x = sech(y) using the
formula for sech. Note that you
two possible answers - each is
the inverse of a different part
of sech.

4

[18]: [y == log(-1/2*sqrt(-4*x^2 + 1)/x + 1/2/x), y == log(1/2*sqrt(-4*x^2 + 1)/x +
1/2/x)]

[19]: solve(sin(x) == 1, x) # One last example, using the solve command
to find where sin(x) = 1. Note that it
one of the infinitely many possible values
of x.

[19]: [x == 1/2*pi]

[]: # That's all, folks!

5

