MATH1110H-B-lab-2023-09-19-F02

September 26, 2023
[]:

```
# MATH 1110H-B F02 Lab 2023-09-19
#
# Wherein we ring the changes on the several plotting commands in
# SageMath, without getting into the fancy stuff like labelling
# points, curves, or axes.
```

[1](!%5B%5D(./images/83265438cb52537a606ab6dd7b2151c7_1238_2296_348_1777.jpg)):

```
plot(3*x+6) # The basic plot command, which plots the function
    # for x between -1 and 1 by default. Note that the
    # scale on the vertical and horizontal axes is not
    # the same.
```

[2]: plot(1/x) \# The scale problem gets worse when a function has an \# asymptote.
[2] :

[3]: plot(1/x,-7,-5) \# One can change the x-values used in the plot.
[3] :

[4]: plot $\left(x^{\wedge} 2,-2,2, y m i n=-0, y m a x=3\right)$ \# One can also limit the y-values.
[4]:

[5](!%5B%5D(./images/f2ca7430a5f00abb9f8d9bbaacb0ae76_478_1409_348_1777.jpg)):

```
# One can also change the color of the plotted curve.
plot(x^2,-2,2,color='red')
```

[8](!%5B%5D(./images/1902c5273e9e4f1a42b48d9a6ba8a6aa_264_1200_588_1537.jpg)):

```
var('y') # If you want anything other than x to be considered as a
    # variable, you need to specify as such.
implicit_plot(y^2==x^3,(x,-1,4),(y,-1,4)) # Graphing curves
    # defined implicitly by an equation has its own command.
    # Note the use of == for equality in the given equation
    # and the need to specify the range for each variable
    # separately. (With a format a rather different from how
    # one does it in the basic plot command.)
```

[9] :

```
var('w') # Once again, to use t as a variable, we need to tell
    # SageMath this before actually using it.
parametric_plot((sin(w), cos(w)),(w,-pi,pi)) # This is the
    # specialized command for plotting parametric curves, in
    # which the }x\mathrm{ and }y\mathrm{ coordinates are controlled by a third
    # variable (the parameter), i.e. x = f(t) and y = g(t)
    # for some functions f(t) and g(t). (See Section 10.4 of
    # the textbook.) Note that the }x\mathrm{ and }y\mathrm{ coordinates are
    # specified in an ordered pair and that the range of t to
    # be used is given in the same format as ranges in the
    # implicit_plot command are.
```

[9] :

[10]: parametric_plot((sin(4*w), cos $(3 *$ w)), (w, -pi,pi)) \# Another example of a parametric plot; this is a Lissajous curve.
[10]:

[11](!%5B%5D(./images/22c4ec5b5b53f9e2460a04de8a9db685_998_1929_399_1726.jpg)):

```
var('theta') # Again, to use theta as a variable, we need to tell
    # SageMath this before actually using it.
polar_plot(theta,(theta,0,2*pi)) # This is the specialized
    # command for plotting in polar coordinates. Theta
    # gives the direction of a point, i.e. the angle that
    # the line joining the origin to the point makes with
    # the positive x-axis, measured counterclockwise,
    # and r = f(theta) gives the distance the point is
    # from the origin. (See Section 10.1 of the textbook.)
    # Note that the range of theta to be used is given in
    # the same format as ranges in the implicit_plot and
    # parametric_plot commands are.
```

[13]: polar_plot(e^theta, (theta,--pi,pi))

```
# An exponential spiral in polar coordinates.
```

[13] :

[14](!%5B%5D(./images/5378d00454b507272d0707b05b86e493_1227_1722_341_1779.jpg)):

```
f = e^theta # The same spiral, but with the function defined and
    # named outside the polar_plot command. This is handy
    # if you want to use a function repeatedly or if you
    # want to avoid overly long commands.
polar_plot(f,(theta,-pi,pi))
```

[15]:

```
p1 = plot(x~2) # You can also give plots names and refer to them
    # by name later...
p2 = plot(sqrt(x),color='green')
p1+p2 # ... and superimpose plots by adding them!
```

verbose 0 (3791: plot.py, generate_plot_points) WARNING: When plotting, failed to evaluate function at 100 points.
verbose 0 (3791: plot.py, generate_plot_points) Last error message: 'math domain error'
[15]:

[16]: implicit_plot(abs(x) + abs(y) == 1, (x,-1,1), (y,-1,1)) \# SageMath use abs for the absolute value function.
[16]:

[19]: $p \operatorname{lot}(1 / x,-3,3, y \min =-5, y \max =5)$ \# Here we revisit out very first
\# plot with limits on x and y that
\# give us a plot that gives a good
\# idea of how the function behaves.
[19]:

[]: \# That's all for this time! :-)

