
MATH1110H-B-lab-2023-09-19-F02

September 26, 2023

[]: # MATH 1110H-B F02 Lab 2023-09-19
#
Wherein we ring the changes on the several plotting commands in
SageMath, without getting into the fancy stuff like labelling
points, curves, or axes.

[1]: plot(3*x+6) # The basic plot command, which plots the function
for x between -1 and 1 by default. Note that the
scale on the vertical and horizontal axes is not
the same.

[1]:

1

[2]: plot(1/x) # The scale problem gets worse when a function has an
asymptote.

[2]:

[3]: plot(1/x,-7,-5) # One can change the x-values used in the plot.

[3]:

2

[4]: plot(x^2,-2,2,ymin=-0,ymax=3) # One can also limit the y-values.

[4]:

3

[5]: # One can also change the color of the plotted curve.
plot(x^2,-2,2,color='red')

[5]:

[8]: var('y') # If you want anything other than x to be considered as a
variable, you need to specify as such.

implicit_plot(y^2==x^3,(x,-1,4),(y,-1,4)) # Graphing curves
defined implicitly by an equation has its own command.
Note the use of == for equality in the given equation
and the need to specify the range for each variable
separately. (With a format a rather different from how
one does it in the basic plot command.)

[8]:

4

[9]: var('w') # Once again, to use t as a variable, we need to tell
SageMath this before actually using it.

parametric_plot((sin(w),cos(w)),(w,-pi,pi)) # This is the
specialized command for plotting parametric curves, in
which the x and y coordinates are controlled by a third
variable (the parameter), i.e. x = f(t) and y = g(t)
for some functions f(t) and g(t). (See Section 10.4 of
the textbook.) Note that the x and y coordinates are
specified in an ordered pair and that the range of t to
be used is given in the same format as ranges in the
implicit_plot command are.

[9]:

5

[10]: parametric_plot((sin(4*w),cos(3*w)),(w,-pi,pi))
Another example of a parametric plot; this is a Lissajous curve.

[10]:

6

[11]: var('theta') # Again, to use theta as a variable, we need to tell
SageMath this before actually using it.

polar_plot(theta,(theta,0,2*pi)) # This is the specialized
command for plotting in polar coordinates. Theta
gives the direction of a point, i.e. the angle that
the line joining the origin to the point makes with
the positive x-axis, measured counterclockwise,
and r = f(theta) gives the distance the point is
from the origin. (See Section 10.1 of the textbook.)
Note that the range of theta to be used is given in
the same format as ranges in the implicit_plot and
parametric_plot commands are.

[11]:

[13]: polar_plot(e^theta,(theta,-pi,pi))
An exponential spiral in polar coordinates.

[13]:

7

[14]: f = e^theta # The same spiral, but with the function defined and
named outside the polar_plot command. This is handy
if you want to use a function repeatedly or if you
want to avoid overly long commands.

polar_plot(f,(theta,-pi,pi))

[14]:

[15]: p1 = plot(x^2) # You can also give plots names and refer to them
by name later...

p2 = plot(sqrt(x),color='green')
p1+p2 # ... and superimpose plots by adding them!

verbose 0 (3791: plot.py, generate_plot_points) WARNING: When plotting, failed
to evaluate function at 100 points.
verbose 0 (3791: plot.py, generate_plot_points) Last error message: 'math domain
error'

[15]:

8

[16]: implicit_plot(abs(x) + abs(y) == 1, (x,-1,1), (y,-1,1))
SageMath use abs for the absolute value function.

[16]:

9

[19]: plot(1/x,-3,3,ymin=-5,ymax=5) # Here we revisit out very first
plot with limits on x and y that
give us a plot that gives a good
idea of how the function behaves.

[19]:

[]: # That's all for this time! :-)

10

