
Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals
Trent University, Fall 2023

Solutions to the Final Examination
15:00-18:00 in SC 137 on Wednesday, 20 December.

Instructions: Do both of parts X and Y, and, if you wish, part Z. Please show all your
work, justify all your answers, and simplify these where you reasonably can. When you
are asked to do k of n questions, only the first k that are not crossed out will be marked.
If you have a question, or are in doubt about something, ask!

Aids: Any calculator, as long as it can’t communicate with other devices; (all sides of)
one letter- or A4-size sheet; one brain (no neuron limit).

Part X. Do all four (4) of 1–4.

1. Compute
dy

dx
as best you can in any four (4) of a–f. [20 = 4 × 5 each]

a. y = ex
2+1 b. y = xe−x c. y = ln (cos(x))

d. y =
(
x3 + 41

)13
e. y =

x

1 + x2
f. y =

∫ cos(x)

√
π

t dt

Solutions. a. Chain Rule and Power Rule.

dy

dx
=

d

dx
ex

2+1 = ex
2+1 · d

dx

(
x2 + 1

)
= ex

2+1 · (2x+ 0) = 2xex
2+1 �

b. Product Rule and Chain Rule.

dy

dx
=

d

dx

(
xe−x

)
=

[
d

dx
x

]
e−x + x

[
d

dx
e−x

]
= 1e−x + xe−x · d

dx
(−x) = e−x + xe−x(−1) = (1− x)e−x �

c. Chain Rule.

dy

dx
=

d

dx
ln (cos(x)) =

1

cos(x)
· d
dx

cos(x) =
1

cos(x)
· (− sin(x)) = − tan(x) �

d. Power Rule and Chain Rule.

dy

dx
=

d

dx

(
x3 + 41

)13
= 13

(
x3 + 41

)12 d

dx

(
x3 + 41

)
= 13

(
x3 + 41

)12 (
3x2 + 0

)
= 39x2

(
x3 + 41

)12
�

e. Quotient Rule and Power Rule.

dy

dx
=

d

dx

(
x

1 + x2

)
=

[
d
dxx
] (

1 + x2
)
− x

[
d
dx

(
1 + x2

)]
(1 + x2)

2

=
[1]
(
1 + x2

)
− x [0 + 2x]

(1 + x2)
2 =

1 + x2 − 2x2

(1 + x2)
2 =

1− x2

(1 + x2)
2 �
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f. Integrate, then Power Rule and Chain Rule.

dy

dx
=

d

dx

[∫ cos(x)

√
π

t dt

]
=

d

dx

[
t2

2

∣∣∣∣cos(x)√
π

]
=

d

dx

[
cos2(x)

2
− π

2

]
=

1

2
· 2 cos(x) · d

dx
cos(x)− 0 = cos(x) (− sin(x)) = − cos(x) sin(x) = −1

2
sin(2x) �

f. Fundamental Theorem of Calculus and Chain Rule.

dy

dx
=

d

dx

[∫ cos(x)

√
π

t dt

]
=

[
d

du

∫ u

√
π

t dt

]
· du
dx

[where u = cos(x)] = u · du
dx

= cos(x) · d
dx

cos(x) = cos(x) (− sin(x)) = − cos(x) sin(x) = −1

2
sin(2x) �

2. Evaluate any four (4) of the integrals a–f. [20 = 4 × 5 each]

a.

∫ 1

0

x+ 1

x2 + 2x+ 1
dx b.

∫
x sec2(x) dx c.

∫
tanh(x) dx

d.

∫ π/2

0

sin(2x) dx e.

∫ 1

0

x2

ex
dx f.

∫
arctan(x)

1 + x2
dx

Solutions. a. Simplification and Substitution.∫ 1

0

x+ 1

x2 + 2x+ 1
dx =

∫ 1

0

x+ 1

(x+ 1)2
dx =

∫ 1

0

1

x+ 1
dx

Let w = x+ 1, so dw = dx,
and change the limits: x 0 1

w 1 2

=

∫ 2

1

1

w
dw = ln(w)|21 = ln(2)− ln(1) = ln(2)− 0 = ln(2) �

a. Substitution. We will substitute right away, with u = x2 + 2x+ 1, so du = (2x+ 2) dx
and (x + 1) dx = 1

2 du. This time we will keep the old limits and substitute back before
using them.∫ 1

0

x+ 1

x2 + 2x+ 1
dx =

∫ x=1

x=0

1

u
· 1

2
du =

1

2
ln(u)

∣∣∣∣x=1

x=0

=
1

2
ln
(
x2 + 2x+ 1

)∣∣∣∣1
0

=
1

2
ln (4)− 1

2
ln (1) =

1

2
ln
(
22
)
− 1

2
· 0 =

1

2
· 2ln (2) = ln(2) �

b. Integration by Parts and Substitution. We will use the parts u = x and v′ = sec2(x),

so u′ = 1 and v = tan(x). We will then integrate tan(x) =
sin(x)

cos(x)
using the substitution

w = cos(x), so dw = − sin(x) dx and sin(x) dx = (−1) dw.∫
x sec2(x) dx = x tan(x)−

∫
1 tan(x)dx = x tan(x)−

∫
sin(x)

cos(x)
dx

= x tan(x)−
∫

1

w
· (−1) dw = x tan(x) +

∫
1

w
dw

= x tan(x) + ln(w) + C = x tan(x) + ln (cos(x)) + C �

2



c. Substitution. Recall that the hyperbolic function tanh(x) =
sinh(x)

cosh(x)
and also that

d

dx
cosh(x) = sinh(x). (No negative sign here, unlike with the trigonometric counterparts.)

We will use the substitution u = cosh(x), so du = sinh(x) dx.∫
tanh(x) dx =

∫
sinh(x)

cosh(x)
dx =

∫
1

u
du = ln(u) + C = ln (cosh(x)) + C �

d. Substitution. We will use the substitution z = 2x, so dz = 2 dx and dx = 1
2 dz, changing

the limits as we go along:
x 0 π/2
z 0 π∫ π/2

0

sin(2x) dx =

∫ π

0

sin(z) · 1

2
dz = −1

2
cos(z)

∣∣∣∣π
0

=

(
−1

2
cos(π)

)
−
(
−1

2
cos(0)

)
= −1

2
(−1)−

(
−1

2
· 1
)

=
1

2
+

1

2
= 1 �

Note. One could also do d by using the identity sin(2x) = 2 sin(x) cos(x) and then
substituting for sin(x) or cos(x), but that’s a little more work.

e. Integration by Parts, twice over. We will also use the fact that
1

ex
= e−x. Note that∫

e−x dx = −e−x if one substitutes for −x.∫ 1

0

x2

ex
dx =

∫ 1

0

x2e−x dx
Let u = x2 and v′ = e−x, so
u′ = 2x and v = −e−x.

= −x2e−x
∣∣1
0
−
∫ 1

0

2x
(
−e−x

)
dx

= −x2e−x
∣∣1
0

+ 2

∫ 1

0

xe−x dx
Let s = x and t′ = e−x, so
s′ = 1 and t = −e−x.

= −x2e−x
∣∣1
0

+ 2

[
−xe−x

∣∣1
0
−
∫ 1

0

1
(
−e−x

)
dx

]
=
(
−12e−1

)
−
(
−02e−0

)
+ 2

[
−xe−x

∣∣1
0

+

∫ 1

0

e−x dx

]
= −1

e
− 0 + 2

[(
−1e−1

)
−
(
−0e−0

)
+
(
−e−x

)∣∣1
0

]
= −1

e
+ 2

[
−1

e
− 0 +

(
−e−1

)
−
(
−e−0

)]
= −1

e
+ 2

[
−1

e
− 1

e
+ 1

]
= −1

e
− 4

e
+ 2 = 2− 5

e
�

f. Substitution. We will use the substitution w = arctanx, so dw =
1

1 + x2
dx.∫

arctan(x)

1 + x2
dx =

∫
w dw =

w2

2
+ C =

1

2
arctan2(x) + C �

3



3. Do any four (4) of a–f. [20 = 4 × 5 each]

a. Use the ε–δ definition of limits to verify that lim
x→1

(3x− 5) = −2.

b. At what value(s) of x, if any, does the graph of y =
x

1 + x2
have a tangent line

with slope 1?

c. Compute lim
x→∞

x2 + 1

ex + 1
.

d. Find g(x) if g′(x) = cos(πx) and g(1) =
1

π
.

e. Let h(x) =

{
e−x

2

x 6= 0

0 x = 0
. Determine whether h(x) is continuous at x = 0.

f. Sketch the finite region between y = x + 1 and y = 2x, for 0 ≤ x ≤ 1, and find
its area.

Solutions. a. We need to show that for every ε > 0 there is a δ > 0 such that if
|x − 1| < δ, then |(3x− 5)− (−2)| < ε. As usual, we attempt to reverse-engineer the
required δ from |(3x− 5)− (−2)| < ε.

Suppose we are given an ε > 0. Then:

|(3x− 5)− (−2)| < ε ⇐⇒ |3x− 5 + 2| < ε ⇐⇒ |3x− 3| < ε

⇐⇒ 3|x− 1| < ε ⇐⇒ |x− 1| < ε

3
,

Since every step above is reversible, if we set δ =
ε

3
, we will have that if |x− 1| < δ, then

|(3x− 5)− (−2)| < ε, as required. It follows that lim
x→1

(3x− 5) = −2 by the ε–δ definition

of limits. �

b. The slope of the tangent line is given by the derivative of the function. We could cite
1e if we did it, otherwise we have:

dy

dx
=

d

dx

(
x

1 + x2

)
=

[
d
dxx
] (

1 + x2
)
− x

[
d
dx

(
1 + x2

)]
(1 + x2)

2

=
[1]
(
1 + x2

)
− x [0 + 2x]

(1 + x2)
2 =

1 + x2 − 2x2

(1 + x2)
2 =

1− x2

(1 + x2)
2

The derivative is defined for all x because 1 +x2 ≥ 1 > 0 for all x. So when is the slope 1?

dy

dx
= 1 ⇐⇒ 1− x2

(1 + x2)
2 = 1 ⇐⇒ 1− x2 =

(
1 + x2

)2
= 1 + 2x2 + x4

⇐⇒ x4 + 3x2 = 0 ⇐⇒ x2
(
x2 + 3

)
= 0 ⇐⇒ x2 = 0 or x2 = −3

⇐⇒ x = 0 or x =
√
−3

Thus the graph of y =
x

1 + x2
has a tangent line with slope 1 exactly when x = 0. �
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c. Informal. Since the natural exponential function ex eventually dominates any polyno-

mial function, such as x2 + 1, as x increases, lim
x→∞

x2 + 1

ex + 1
= 0. �

c. At least semi-formal. We will use l’Hôpital’s Rule twice to compute the limit:

lim
x→∞

x2 + 1

ex + 1

→∞
→∞ = lim

x→∞

d
dx

(
x2 + 1

)
d
dx (ex + 1)

= lim
x→∞

2x

ex
→∞
→∞

= lim
x→∞

d
dx (2x)
d
dxe

x
= lim
x→∞

2

ex
→ 2
→∞ = 0 �

d. If g′(x) = cos(πx), then g(x), the anti-derivative of g′(x) is given by:

g(x) =

∫
g′(x) dx =

∫
cos(πx) dx

Substitute u = πx, so du = π dx
and dx = 1

π du.

=

∫
cos(u) · 1

π
du =

1

π
sin(u) + C =

1

π
sin(πx) + C

It remains to determine the value of the constant C. We are given that g(1) =
1

π
, so

1

π
= g(1) =

1

π
sin(π1) + C =

1

π
sin(π) + C =

1

π
0 + C = 0 + C = C. Thus g(x) =

1

π
sin(πx) +

1

π
=

sin(πx) + 1

π
. �

e. By the definition of continuity, h(x) is continuous at 0 if lim
x→0

h(x) exists and is equal

to h(0). Since h(x) =

{
e−x

2

x 6= 0

0 x = 0
, this boils down to checking whether lim

x→0
e−x

2

= 0:

lim
x→0

e−x
2

= lim
x→0

1

ex2 =
1

e02
=

1

e0
=

1

1
= 1 6= 0

Since lim
x→0

h(x) 6= h(0), h(x) is not continuous at x = 0. �

f. Here is a sketch of the region:
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Note that the graphs intersect at x = 0, since 0 + 1 = 1 = 20, and at x = 1, since
1 + 1 = 2 = 21. For x between 0 and 1, y = x+ 1 is above y = 2x; for example, at x = 1

2

we have 21/2 =
√

2 ≈ 1.4142 < 1.5 = 3
2 = 1

2 +1. It follows that the area of the finite region
between y = x+ 1 and y = 2x, for 0 ≤ x ≤ 1, is:

Area =

∫ 1

0

(x+ 1− 2x) dx =

∫ 1

0

(x+ 1) dx−
∫ 1

0

2x dx =

(
x2

2
+ x

)∣∣∣∣1
0

− 2x

ln(2)

∣∣∣∣1
0

=

[(
12

2
+ 1

)
−
(

02

2
+ 0

)]
−
[

21

ln(2)
− 20

ln(2)

]
=

[
3

2
− 0

]
−
[

2

ln(2)
− 1

ln(2)

]
=

3

2
− 1

ln(2)
≈ 1.5− 1.4427 ≈ 0.0573 �

4. Find the domain, intercepts, vertical and horizontal asymptotes, intervals of increase
and decrease, maximum and minimum points, intervals of concavity, and inflection

points of f(x) =
ex

ex + 1
. [12]

Solution. We run through the indicated checklist:

i. Domain. Since ex > 0 for all x, 1 + ex 6= 0 for all x. It follows that f(x) =
ex

ex + 1
is defined (and continuous and differentiable) for all x, so its domain is all x, or R, or
(−∞,∞), or . . .

ii. Intercepts. f(0) =
e0

e0 + 1
=

1

1 + 1
=

1

2
, so f(x) has y-intercept 1

2 . Since the numerator

ex is > 0 for all x, f(x) 6= 0 for all x, so there is no x-intercept.

iii. Vertical Asymptotes. Since f(x) is defined and continuous for all x, it cannot have
any vertical asymptote.

iv. Horizontal Asymptotes. We take the limits as x→ ±∞ and see what happens:

lim
x→−∞

f(x) = lim
x→−∞

ex

ex + 1

→ 0+

→ 0+ + 1
=

0+

1+
= 0+

lim
x→∞

f(x) = lim
x→∞

ex

ex + 1
= lim
x→∞

ex

ex + 1
· 1/ex

1/ex

= lim
x→∞

1

1 + 1/ex
→ 1
→ 1 + 0+

=
1

1 + 0+
= 1−

Note that f(x) approaches 0 from above as x → −∞ since both the numerator and
denominator are positive, and that f(x) approaches 1 from below as x → ∞ since both
the numerator and denominator are positive and the numerator is always smaller than the
denominator. It follows that f(x) has horizontal asymptotes of y = 0 as x → −∞ and
y = 1 as x→∞.
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v. Increase/Decrease and Maxima/Minima. We compute the first derivative, using the
Quotient Rule:

f ′(x) =
d

dx

(
ex

ex + 1

)
=

[
d
dxe

x
]

(ex + 1)− ex
[
d
dx (ex + 1)

]
(ex + 1)

2

=
[ex] (ex + 1)− ex [ex + 0]

(ex + 1)
2 =

(ex)
2

+ ex − (ex)
2

(ex + 1)
2 =

ex

(ex + 1)
2

Since ex > 0 and (ex + 1)
2
> 0 for all x, f ′(x) is defined and continuous and differentiable

for all x, and also f ′(x) > 0 for all x. f(x) therefore has no critical points and is always
increasing. We summarize this in the usual (pretty trivial in this case) table:

x (−∞,∞)
f ′(x) +
f(x) ↑

Note, in particular, that f(x) has no maximum or minimum points.

vi. Concavity and Inflection. We compute the second derivative, using the Quotient Rule
and the Chain Rule:

f ′′(x) =
d

dx

(
ex

(ex + 1)
2

)
=

[
d
dxe

x
]

(ex + 1)
2 − ex

[
d
dx (ex + 1)

2
]

(
(ex + 1)

2
)2

=
[ex] (ex + 1)

2 − ex
[
2 (ex + 1) · ddx (ex + 1)

]
(ex + 1)

4

=
ex (ex + 1)

2 − ex [2 (ex + 1) ex]

(ex + 1)
4 =

ex (ex + 1)
2 − 2 (ex)

2
(ex + 1)

(ex + 1)
4

=
ex (ex + 1)− 2 (ex)

2

(ex + 1)
3 =

(ex)
2

+ ex − 2 (ex)
2

(ex + 1)
3 =

+ex − (ex)
2

(ex + 1)
3

=
ex (1− ex)

(ex + 1)
3

Since ex + 1 > 0 for all x, f ′′(x) is defined and continuous and differentiable for all x. As

ex > 0 and (ex + 1)
3
> 0 for all x, f ′′(x) is positive, negative, or zero exactly as 1− ex is.

1− ex = 0 ⇐⇒ ex = 1 ⇐⇒ x = 0. Similarly, 1− ex < 0 ⇐⇒ ex > 1 ⇐⇒ x > 0 and
1 − ex > 0 ⇐⇒ ex < 1 ⇐⇒ x < 0. Thus f(x) is concave up when x < 0 and concave
down when x > 0, and so has an inflection point at x = 0. We summarize this information
in the usual table:

x (−∞, 0) 0 (0,∞)
f ′′(x) + 0 −
f(x) ^ infl _
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vii. The Graph. It wasn’t actually asked for, and it might be cheating a little to have a
computer do the work, but here is a piece of the graph:

�

Part Y. Do any two (2) of 5–7. [28 = 2 × 14 each] . . . and here is “more”!

5. Sticky is trapped in a dead-end alley! An extreme low-rider truck with its headlights
at ground level is chasing sticky down the alley, straight towards the wall at the end
of the alley. Sticky, who is 1.5 m tall, is running towards the wall at a constant speed
of 5 m/s and the truck is driving towards Sticky and the wall at a constant speed of
10 m/s. Sticky casts a shadow in the light from the truck headlights upon the wall
at the end of the alley. How is the tip of Sticky’s shadow moving on the wall at the
instant that Sticky is 10 m from the wall and the truck is 10 m from Sticky?

Solution. Let x, y, and s be as indicated in the annotated diagram above. That is, let

x be the distance between the truck and the wall, so we are given that
dx

dt
= −10 m/s

(the sign is negative because the distance is diminishing) and at the instant in question
we have that x = 10 + 10 = 20 m. Similarly, let y be the distance between Sticky and the

wall, so we are given that
dy

dt
= −5 m/s (again, the sign is negative because the distance

is diminishing) and at the instant in question we have that y = 10 m. Finally, let s be the
height (or length on the wall) of the shadow cast by Sticky in the truck’s headlights; our

task is to determine
ds

dt
.
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Consider the triangle formed by the headlight beam, Sticky, and the ground, as well
as the triangle formed by the headlight beam, the shadow on the wall, and the ground.
Both are right triangles, with the hypotenuse formed by the headlight beam, and both
share a common angle, that between the headlight beam and the ground. Since they have
two corresponding angles that are equal, it follows that these two triangles are similar, and
hence that corresponding sides have the same ratios. Since the vertical sides are 1.5 m and
s m for the smaller and larger triangles respectively, and the horizontal sides are x− y m
and x m respectively, it follows that

s

x
=

1.5

x− y
.

It follows in turn that s =
1.5x

x− y
, and so, with the help of the Quotient Rule,

ds

dt
at

any giiven instant is given by:

ds

dt
=

d

dt

(
1.5x

x− y

)
= 1.5

d

dt

(
x

x− y

)
= 1.5

[
dx
dt

]
(x− y)− x

[
d
dt (x− y)

]
(x− y)2

= 1.5
[−10] (x− y)− x

[
dx
dt −

dy
dt

]
(x− y)2

= 1.5
−10(x− y)− x [−10− (−5)]

(x− y)2

= 1.5
−10x+ 10y − x [−5]

(x− y)2
= 1.5

−10x+ 10y + 5x

(x− y)2
= 1.5

10y − 5x

(x− y)2

At the instant that Sticky is 10 m from the wall and the truck is 10 m from Sticky, we
have x = 20 and y = 10, so at this instant we also have

ds

dt
= 1.5

10 · 10− 5 · 20

(20− 10)2
= 1.5

100− 100

102
= 1.5

0

100
= 0 m/s.

That is, at this instant the length/height of shadow is not changing at all, so its tip is not
moving. �

Note: In this setup the shadow will not be changing at all until the truck meets the wall
with Sticky between them. Work out why!
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6. The region between the x-axis and y =
√
x, for 0 ≤ x ≤ 1, and between the x-axis

and y = −x
2

+
3

2
, for 1 ≤ x ≤ 3, is revolved about the x-axis. Sketch the resulting

solid and find its volume.

Solution. Here is a sketch of the solid:

We will use the disk/washer method to compute the volume of this “ice-cream cone”.
When 0 ≤ x ≤ 1, the cross-sectional disk at x has radius r = y − 0 =

√
x and hence

area A(x) = πr2 = π (
√
x)

2
= πx, and when 1 ≤ x ≤ 3, the disk at x has radius

r = y − 0 = − 1
2x+ 3

2 and hence area A(x) = πr2 = π
(
− 1

2x+ 3
2

)2
= π

(
1
4x

2 − 3
2x+ 9

4

)
. It

follows that the volume of the ice-cream cone is:

V =

∫ 3

0

A(x) dx =

∫ 1

0

A(x) dx+

∫ 3

1

A(x) dx =

∫ 1

0

πx dx+

∫ 3

1

π

(
1

4
x2 − 3

2
x+

9

4

)
dx

=
πx2

2

∣∣∣∣1
0

+ π

(
1

4
· x

3

3
− 3

2
· x

2

2
+

9

4
· x
)∣∣∣∣3

1

=
π12

2
− π02

2
+ π

(
x3

12
− 3x2

4
+

9x

4

)∣∣∣∣3
1

=
π

2
− 0 + π

(
33

12
− 3 · 32

4
+

9 · 3
4

)
− π

(
13

12
− 3 · 12

4
+

9 · 1
4

)
=
π

2
+ π

(
27

12
− 27

4
+

27

4

)
− π

(
1

12
− 3

4
+

9

4

)
=

6π

12
+ π · 27

12
− π · 19

12
=

14π

12
=

7π

6

Thus the volume of this “ice=cream cone” is
7π

6
. [Units, you ask? What’s that? :-)] �

Note. One could also do this problem, with overall about an equal amount of work, using
the cylindrical shell method.
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7. Find the maximum possible area of a rectangle whose base is on the x-axis and whose
upper corners are on the semi-circle y =

√
4− x2.

Solution. The semi-circle y =
√

4− x2 is symmetric about the y-axis because
√

4− x2 =√
4− (−x)2. It follows that a rectangle whose base is on the x-axis, with one corner at x,

and whose upper corners are on the semi-circle y =
√

4− x2, will have its other corner on
the x-axis be at −x. (x and −x added above to the originally given diagram.) Note that
the semi-circle meets the x-axis at x = ±2, and that

√
4− x2 is undefined when x < −2

or x > 2. It follows that we only to deal with −2 ≤ x ≤ 2 in this problem. In fact, since x
and −x both give the same rectangle, we can stick to 0 ≤ x ≤ 2.

The base of the rectangle with a corner at x, where 0 ≤ x ≤ 2, has length x−(−x) = 2x
and its height is y − 0 = y =

√
4− x2, so its area is A(x) = base · height = 2x

√
4− x2.

We need to maximize this area function on the interval [0, 2]; note that A(x) is continuous
on this interval, so we can do so by comparing the value of A(x) at the endpoints with its
value at any critical points in the interval.

As usual, we first look for critical points, where the derivative A′(x) is undefined or
zero. We compute said derivative with the help of the Product, Chain, and Power Rules:

A′(x) =
d

dx

(
2x
√

4− x2
)

=
d

dx

(
2x
(
4− x2

)1/2)
=

[
d

dx
(2x)

] (
4− x2

)1/2
+ 2x ·

[
d

dx

(
4− x2

)1/2]
= 2

(
4− x2

)1/2
+ 2x · 1

2

(
4− x2

)−1/2 [ d
dx

(
4− x2

)]
= 2

(
4− x2

)1/2
+ x

(
4− x2

)−1/2 · (−2x)

= 2
√

4− x2 +
−2x2√
4− x2

=
2
(√

4− x2
)2

√
4− x2

− 2x2√
4− x2

=
2
(
4− x2

)
− 2x2

√
4− x2

=
8− 2x2 − 2x2√

4− x2
=

8− 4x2√
4− x2

Note that the derivative is defined for all x with −2 < x < 2; in particular, it is defined
at all points in the interval [0, 2] except the right-hand endpoint, which we were going to
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check separately anyway. Looking for critical points, observe that A′(x) = 0 exactly when
its numerator is 0, so:

A′(x) = 0 ⇐⇒ 8− 4x2 = 0 ⇐⇒ 4x2 = 8 ⇐⇒ x2 = 2 ⇐⇒ x = ±
√

2

x = −
√

2 is not in the interval [0, 2], but x =
√

2 is.
We compare the values of A(x) = 2x

√
4− x2 at the endpoints x = 0 and x = 2 with

its value at the critical point x =
√

2 to find the maximum.

A(0) = 2 · 0 ·
√

4− 02 = 0

A(2) = 2 · 2 ·
√

4− 22 = 4 ·
√

0 = 0

A
(√

2
)

= 2 ·
√

2 ·
√

4−
(√

2
)2

= 2
√

2 ·
√

4− 2 = 2
√

2 ·
√

2 = 2 · 2 = 4

Thus the maximum possible area of a rectangle whose base is on the x-axis and whose
upper corners are on the semi-circle y =

√
4− x2 is 4, which occurs when x =

√
2. �

[Total = 100]

Part Z. Here be bonus points! Do one or both of 7 + 17 + 17 + 1 and 7 + 27 + 27 + 2.

7 + 17 + 17 + 1. Give a funny and clever way for Sticky to get out of the sticky situation described in
question 5. [1]

Solution. Please help Sticky! :-) �

7 + 27 + 27 + 2. Does Euler’s polynomial x2 − x + 41 always give you a prime number when x is a
positive integer? If it does, explain why; if not, give an example where it doesn’t. [1]

Solution. It doesn’t, since 412− 41 + 41 = 412, which is not a prime number since it has
a positive integer factor, namely 41, other than itself and 1.

The really remarkable thing is that for every positive integer x with 1 ≤ x ≤ 40,
x2 − x+ 41 is indeed a prime number. �

I hope that you enjoyed the course. Enjoy the break even more!
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