Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals Trent University, Fall 2023
 Solutions to Assignment \#5
 Definite integrals done the hard - but not hardest! - way!

Warning: Please read the accompanying handout Right-Hand Rule Riemann Sums for the necessary definitions and a simple example.

1. Use the Right-Hand Rule to compute $\int_{-1}^{3}\left(x^{2}-1\right) d x$ by hand. [6]

You may find the summation formulas $\sum_{i=1}^{n} i=1+2+3+\cdots+n=\frac{n(n+1)}{2}$ and $\sum_{i=1}^{n} i^{2}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ to be useful in working through $\mathbf{1}$.

Solution. The Right-Hand Rule formula for computing the definite integral $\int_{a}^{b} f(x) d x$ is:

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty}\left[\frac{b-a}{n} \cdot \sum_{i=1}^{n} f\left(a+i \cdot \frac{b-a}{n}\right)\right]
$$

We plug $a=-1, b=3$, and $f(x)=x^{2}-1$ into this formula - with a slight delay for $f(x)$ to simplify other bits first - and then go to work:

$$
\begin{aligned}
\int_{-1}^{3}\left(x^{2}-1\right) d x & =\lim _{n \rightarrow \infty}\left[\frac{3-(-1)}{n} \cdot \sum_{i=1}^{n} f\left(-1+i \cdot \frac{3-(-1)}{n}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4}{n} \cdot \sum_{i=1}^{n} f\left(-1+i \cdot \frac{4}{n}\right)\right]=\lim _{n \rightarrow \infty}\left[\frac{4}{n} \cdot \sum_{i=1}^{n}\left[\left(-1+i \cdot \frac{4}{n}\right)^{2}-1\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{4}{n} \cdot \sum_{i=1}^{n}\left[1-2 i \cdot \frac{4}{n}+i^{2} \frac{16}{n^{2}}-1\right]\right]=\lim _{n \rightarrow \infty}\left[\frac{4}{n} \cdot \sum_{i=1}^{n} \frac{8}{n}\left[\frac{2}{n} i^{2}-i\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{32}{n^{2}} \cdot \sum_{i=1}^{n}\left[\frac{2}{n} i^{2}-i\right]\right]=\lim _{n \rightarrow \infty}\left[\frac{32}{n^{2}} \cdot\left[\left(\sum_{i=1}^{n} \frac{2}{n} i^{2}\right)-\left(\sum_{i=1}^{n} i\right)\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{32}{n^{2}} \cdot\left[\left(\frac{2}{n} \sum_{i=1}^{n} i^{2}\right)-\frac{n(n+1)}{2}\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{32}{n^{2}} \cdot\left[\frac{2}{n} \cdot \frac{n(n+1)(2 n+1)}{6}-\frac{n^{2}+n}{2}\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{32}{n^{2}} \cdot\left[\frac{2 n^{2}+3 n+1}{3}-\frac{n^{2}+n}{2}\right]\right] \\
& =\lim _{n \rightarrow \infty}\left[\frac{64}{3}+\frac{32}{n}+\frac{32}{3 n^{2}}-16-\frac{16}{n}\right]=\frac{64}{3}+0+0-\frac{48}{3}-0=\frac{16}{3} \quad \square
\end{aligned}
$$

2. Use the Right-Hand Rule to compute $\int_{-1}^{3}\left(x^{2}-1\right) d x$ using SageMath. [4]

You may find SageMath's sum command, and perhaps also the limit command, to be of use in working through 2 .

Solution. Here is a fairly general code fragment which could be easily modified to compute other definite integrals using the Right-Hand Rule:

```
[1]: var("n")
    var("i")
    f = function('f')(x)
    f(x) = x 2 - 1
    a=-1
    b}=
    s = function('s')(n)
    s(n) = sum( (b-a)/n* f(a+i*(b-a)/n),i, 1, n )
    limit(s(n),n=00)
```

[1]: $16 / 3$

Note. We can check both of our answers above by having SageMath compute the definite integral directly. Continuing the session used to answer 2:
[2]: integral($f, x, a, b)$
[2]: $16 / 3$

