In [1]: \# MATH 1110H, Fall 2023
\# Solutions to Assignment \#1
\#
\# 1. Plot the following graphs in Cartesian coordinates.
\#
\# 1a. $y=x$ for $-2<=x<=2$.
plot(x, -2, 2)
Out[1]:

In [2]: \# 1b. $y=|x|$ for $-2<=x<=2$.
plot(abs(x), -2, 2)

In [3]: \# 1c. $y=\left(x^{\wedge} 2-4\right) / 2$ for $-2<=x<=2$.
$\operatorname{plot}\left(\left(x^{\wedge} 2-4\right) / 2,-2,2\right)$
Out [3]:

In [4]: \# 1d. $y=-\operatorname{sqrt}\left(4-x^{\wedge} 2\right)$ for $-2<=x<=2$.
plot(-sqrt(4-x^2), -2, 2)
Out [4]:

In [5]: \# 2. Plot the following implicitly defined curves.
\#
\# 2a. $x^{\wedge} 2+y^{\wedge} 2=4$ for all x and y for which this equation makes \# sense.
var("y") \# Since x is the only thing assumed to be a variable.
implicit_plot($\left.x^{\wedge} 2+y^{\wedge} 2==4,(x,-2,2),(y,-2,2)\right)$
\# Note that implicit_plot wants you to specify the desired ranges \# for both variables, so if you want to plot all those that make \# sense, you need to work those ranges out or experiment a bit. \# Note also the use of == tor equality as a relation, rather than \# =, which is an assignment operator in SageMath

Out[5]:

In [6]: \# 2b. |xy|=1 for all x and y for which this equation makes sense. implicit_plot(abs(x*y) == 1, (x,-5,5), (y,-5,5))
\# In this case, there is no way to display the plot for all x and
\# y, as the possible values include all real numbers except 0.
\# Note also that multiplication must be explicitly specified.
Out [6]:

In [7]: \# 2c. $x^{\wedge} 2+4 y^{\wedge} 2=4$ for all x and y for which this equation makes
implicit_plot($\left.x^{\wedge} 2+4 * y^{\wedge} 2==4,(x,-2,2),(y,-2,2)\right)$

In [8]: \# 2d. $\left(x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge 2}-4 x\left(x^{\wedge} 2+y^{\wedge} 2\right)-4 y^{\wedge 2}=0$ for all x and y for \# which this equation makes sense.
implicit_plot(($\left.x^{\wedge} 2+y^{\wedge} 2\right)^{\wedge 2}-4 * x^{*}\left(x^{\wedge} 2+y^{\wedge} 2\right)-4 * y^{\wedge} 2==0,(x,-1,4)$,
Out [8] :

In [9]: \# 3. Plot the following parametric curves.
\#
\# 3a. $x=2 t$ and $y=2 t^{\wedge} 2-2$ for $-1<=t<=1$.
var("t") \# Since x is the only thing assumed to be a variable.
parametric_plot((2*t, 2*t^2 - 2), (t,-1,1))
Out [9]:

In [10]: \# 3b. $x=2 \cos (t)$ and $y=2 \sin (t)$ for $0<=t<=2 p i$.
parametric_plot((2*cos(t), 2*sin(t)), (t, 0,2*pi))
\# Note that the name of that popular constant in Sagemath is just pi.
Out[10]:

In [11]: \# 3c. $x=2 \cos (t)$ and $y=\sin (t)$ for $0<=t<=2 p i$.
parametric_plot((2*cos(t), sin(t)), (t, 0, 2*pi))
Out [11]:

In [12]: \# 3d. $x=\cos (4 t) \cos (t)$ and $y=\sin (3 t) \sin (t)$ for $0<=t<=2 p i$. parametric_plot((cos(4*t)*cos(t), sin(3*t)*sin(t)), (t,0,2*pi))

Out [12]:

In [13]: \# 4. Plot the following curves in polar coordinates.
\#
\# 4a. r = 1 for $0<=$ theta $<=2 p i$.
var("theta") \# Since x is the only thing assumed to be a variable.
polar_plot(1, (theta, 0,2*pi))
Out [13]:

In [14]: \# 4b. $r=2 \cos ($ theta) for $0<=$ theta $<=2 p i$.
polar_plot(2*cos(theta), (theta, 0,2*pi))
Out [14]:

In [15]: \# 4c. $r=\cos \left(2^{*}\right.$ theta) for $0<=$ theta $<=2 p i$.
polar_plot(cos(2*theta), (theta, 0,2*pi))
Out [15]:

In [16]: \# 4d. $r=2(\cos ($ theta $) ~-~ 1) ~ f o r ~ 0 ~<=~ t h e t a ~<=~ p i . ~$
polar_plot(2*(cos(theta)-1), (theta, 0, pi))
Out [16]:

In [17]: \# 5. Some of the curves in questions 1-4 are part or all of other \# curves in questions 1-4. Identify as many such cases as you \# can.
\#
\# Solution. Here are the cases where one of the curves in questions \# 1-4 is all or part of another curve in questions 1-4:
\#
\# i. The piece of a parabola in 1 c is the same curve as 3a.
\#
\# ii. The semi-circle in $1 d$ is the lower half of the circles in $2 a$ \# and $3 b$.
\#
\# iii. The circles in $2 a$ and $3 b$ are both the circle of radius 2 with \# centre at the origin. Note that neither is the circle in $4 a$ \# or the one in $4 b$, as both of these circles have radius 1. \# (The circles in $4 a$ and $4 b$ are not the same either: they have \# different centres.)
\# iv. The curves in 2c and 3c are the same ellipse.
\#
\# v. The curve in 4d is the lower half of the cardioid in 2d.
\#
\# I think that's all! :-)

