A Few Useful Bits of Algebra and Trigonometry
 Briefly Summarized

Difference of squares

If a is any constant, then $x^{2}-a^{2}=(x-a)(x+a)$. Since $a^{2} \geq 0$ for any real number a, it follows that $x^{2}-C=(x-\sqrt{C})(x+\sqrt{C})$ whenever $C \geq 0$. (Just take $C=a^{2} \ldots$)

By contrast, this does not work for $x^{2}+C=x-(-C)$ if $C>0$, as this would require $\sqrt{-C}$ to be a real number.

The quadratic formula
The solutions of the equation $a x^{2}+b x+c=0$, where $p \neq 0$, are given by

$$
x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \quad \text { and } \quad x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} .
$$

These solutions are the roots of the quadratic $a x^{2}+b x+c$. Note that if the discriminant of the equation, the $b^{2}-4 a c$ inside the square root, is negative, then the equation $a x^{2}+b x+c=$ 0 cannot have a solution x that is a real number.

If we set $r=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ and $s=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$, then $a x^{2}+b x+c=a(x-$ $r)(x-s)$, so the quadratic formula also gives us a handy way to factor quadratic expressions into linear factors when it is possible to do so. If the discriminant $b^{2}-4 a c$ is negative, the quadratic has no real roots and it is impossible to factor the quadratic expression into linear factors with real coefficients, in which case the quadratic is said to be irreducible.

Completing the square

"Completing the square" on the quadratic $p x^{2}+q x+r$ works as follows:

$$
\begin{aligned}
p x^{2}+q x+r & =p\left[x^{2}+\frac{q}{p} x+\frac{r}{p}\right]=p\left[\left(x+\frac{q}{2 p}\right)^{2}-\frac{q^{2}}{4 p^{2}}+\frac{r}{p}\right] \\
& =p\left(x+\frac{q}{2 p}\right)^{2}+\left(r-\frac{q^{2}}{4 p}\right)
\end{aligned}
$$

This has several uses, including proving the quadratic formula, simplifying the job of solving the equation $p x^{2}+q x+r=0$ if one did not wish to use the quadratic formula, and, when integrating, setting up substitutions like $u=x+\frac{q}{2 p}$ to simplify integrands involving the quadratic expression $p x^{2}+q x+r$.

Roots and linear factors of polynomials
A polynomial in the variable x is a sum of the form $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ where each a_{i} is a real number. The largest integer $n \geq 0$ for which the coefficient $a_{n} \neq 0$ is the degree of the polynomial. (A small exception is the constant function $f(x)=0$, which is a polynomial with all coefficients $=0$, but is still considered to be of degree 0 .)

Polynomials of degree 0 are said to be constant; of degree 1, linear; of degree 2, quadratic; of degree 3 , cubic; of degree 4, quartic; and of degree 5, quintic. (One could go on, but people usually don't.*)

Some useful facts about polynomials:

- Every polynomial of degree >0 can be written as a product of (powers of) linear factors - that is, polynomials of degree 1 - and/or irreducible quadratic factors - that is, polynomials of degree 2 that have no roots.
- A polynomial $p(x)$ has a real number a as a root, i.e. $p(a)=0$, if and only if $x-a$ is a factor of $p(x)$, that is, $p(x)=(x-a) q(x)$ for some polynomial $q(x)$ of degree one less than the degree of $p(x)$.

A minimal set of trigonometric identities

- $\sin ^{2}(x)+\cos ^{2}(x)=1$
[Often used in the form $\cos ^{2}(x)=1-\sin ^{2}(x)$ or $\sin ^{2}(x)=1-\cos ^{2}(x)$.]
- $1+\tan ^{2}(x)=\sec ^{2}(x)$
[Sometimes used in the form $\sec ^{2}(x)-1=\tan ^{2}(x)$.]
- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)$

$$
=2 \cos ^{2}(x)-1
$$

$$
=1-2 \sin ^{2}(x)
$$

[Sometimes used in the form $\cos ^{2}(x)=\frac{1}{2}+\frac{1}{2} \cos (2 x)$ or $\sin ^{2}(x)=\frac{1}{2}-\frac{1}{2} \cos (2 x)$.]
It is also useful to keep in mind that:

- $\sin (x)$ and $\cos (x)$ are periodic with period 2π : for any real number x and any integer $n, \sin (x+2 n \pi)=\sin (x)$ and $\cos (x+2 n \pi)=\cos (x)$.
- $\sin (x)$ is an odd function, $\sin (-x)=-\sin (x)$ for all x, and $\cos (x)$ is an even function, $\cos (-x)=\cos (x)$ for all x.
- Phase shifts are fun: for any real number $x, \sin \left(x+\frac{\pi}{2}\right)=\cos (x), \cos \left(x-\frac{\pi}{2}\right)=$ $\sin (x), \sin (x \pm \pi)=-\sin (x)$, and $\cos (x \pm \pi)=-\cos (x)$.
While these are not exactly trigonometric identities, it is a good thing to remember that $-1 \leq \sin (x) \leq 1$ and $-1 \leq \cos (x) \leq 1$, i.e. $|\sin (x)| \leq 1$ and $|\cos (x)| \leq 1$, for all x.

[^0]
[^0]: * Why not? Possibly because if one followed the Latin-style numbering of quartic and quintic, the next two would be sextic and septic, respectively. :-)

