Mathematics 1110H – Calculus I: Limits, Derivatives, and Integrals (Section C) TRENT UNIVERSITY, Fall 2021

Solutions to Quiz #9 Wednesday, 24 November.

Compute each of the following three integrals.

1.
$$\int_0^{\pi/2} \frac{\sin(x)}{1 + \cos^2(x)} \, dx$$
 [1.5]

SOLUTION. We will use the substitution $u = \cos(x)$, so $du = -\sin(x) dx$ and $\sin(x) dx = (-1) du$, and change the limits as we go along: $\begin{array}{c} x & 0 & \pi/2 \\ u & 1 & 0 \end{array}$ We will also use the reversal property of definite integrals: $\int_a^b f(x) dx = -\int_b^a f(x) dx$.

$$\int_0^{\pi/2} \frac{\sin(x)}{1 + \cos^2(x)} \, dx = \int_1^0 \frac{1}{1 + u^2} \, (-1) \, du = -\int_1^0 \frac{1}{1 + u^2} \, du = \int_0^1 \frac{1}{1 + u^2} \, du$$
$$= \arctan(u) \big|_0^1 = \arctan(1) - \arctan(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4}$$

2. $\int_0^{\pi/2} \sin^2(x) \cos^3(x) \, dx$ [1.5]

SOLUTION. We will use the trigonometric identity $\cos^2(\theta) = 1 - \sin^2(\theta)$ and the substitution $w = \sin(x)$, so $dw = \cos(x) dx$, and change the limits as we go along: $\begin{array}{c} x & 0 & \pi/2 \\ w & 0 & 1 \end{array}$

$$\int_{0}^{\pi/2} \sin^{2}(x) \cos^{3}(x) dx = \int_{0}^{\pi/2} \sin^{2}(x) \cos^{2}(x) \cos(x) dx$$

$$= \int_{0}^{\pi/2} \sin^{2}(x) \left(1 - \sin^{2}(x)\right) \cos(x) dx$$

$$= \int_{0}^{1} w^{2} \left(1 - w^{2}\right) dw = \int_{0}^{1} \left(w^{2} - w^{4}\right) dw$$

$$= \left(\frac{w^{3}}{3} - \frac{w^{5}}{5}\right) \Big|_{0}^{1} = \left(\frac{1^{3}}{3} - \frac{1^{5}}{5}\right) - \left(\frac{0^{3}}{3} - \frac{0^{5}}{5}\right)$$

$$= \frac{1}{3} - \frac{1}{5} - 0 = \frac{2}{15} \quad \blacksquare$$

3. $\int \frac{e^{2x}}{1+e^x} dx$ [2]

SOLUTION. The key here is that $e^{2x} = (e^x)^2 = e^x e^x$. This will allow us to use the substitution $t = 1 + e^x$, so $dt = e^x dx$ and $e^x = t - 1$.

$$\int \frac{e^{2x}}{1+e^x} dx = \int \frac{e^x e^x}{1+e^x} dx = \int \frac{t-1}{t} dt = \int \left(1 - \frac{1}{t}\right) dt$$
$$= t - \ln(t) + C = 1 + e^x - \ln(1+e^x) + C$$

This could also have been done with a two-stage substitution: first $s = e^x$, so $ds = e^x dx$, and then t = 1 + s, so dt = ds.