Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021

Solutions to Quiz \#9

Wednesday, 24 November.
Compute each of the following three integrals.

1. $\int_{0}^{\pi / 2} \frac{\sin (x)}{1+\cos ^{2}(x)} d x$

Solution. We will use the substitution $u=\cos (x)$, so $d u=-\sin (x) d x$ and $\sin (x) d x=$ $(-1) d u$, and change the limits as we go along: $\begin{array}{ccc}x & 0 & \pi / 2 \\ u & 1 & 0\end{array}$ We will also use the reversal property of definite integrals: $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$.

$$
\begin{aligned}
\int_{0}^{\pi / 2} \frac{\sin (x)}{1+\cos ^{2}(x)} d x & =\int_{1}^{0} \frac{1}{1+u^{2}}(-1) d u=-\int_{1}^{0} \frac{1}{1+u^{2}} d u=\int_{0}^{1} \frac{1}{1+u^{2}} d u \\
& =\left.\arctan (u)\right|_{0} ^{1}=\arctan (1)-\arctan (0)=\frac{\pi}{4}-0=\frac{\pi}{4}
\end{aligned}
$$

2. $\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{3}(x) d x \quad[1.5]$

Solution. We will use the trigonometric identity $\cos ^{2}(\theta)=1-\sin ^{2}(\theta)$ and the substitution $w=\sin (x)$, so $d w=\cos (x) d x$, and change the limits as we go along: $\begin{array}{ccc}x & 0 & \pi / 2 \\ w & 0 & 1\end{array}$

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{3}(x) d x & =\int_{0}^{\pi / 2} \sin ^{2}(x) \cos ^{2}(x) \cos (x) d x \\
& =\int_{0}^{\pi / 2} \sin ^{2}(x)\left(1-\sin ^{2}(x)\right) \cos (x) d x \\
& =\int_{0}^{1} w^{2}\left(1-w^{2}\right) d w=\int_{0}^{1}\left(w^{2}-w^{4}\right) d w \\
& =\left.\left(\frac{w^{3}}{3}-\frac{w^{5}}{5}\right)\right|_{0} ^{1}=\left(\frac{1^{3}}{3}-\frac{1^{5}}{5}\right)-\left(\frac{0^{3}}{3}-\frac{0^{5}}{5}\right) \\
& =\frac{1}{3}-\frac{1}{5}-0=\frac{2}{15}
\end{aligned}
$$

3. $\int \frac{e^{2 x}}{1+e^{x}} d x \quad[2]$

Solution. The key here is that $e^{2 x}=\left(e^{x}\right)^{2}=e^{x} e^{x}$. This will allow us to use the substitution $t=1+e^{x}$, so $d t=e^{x} d x$ and $e^{x}=t-1$.

$$
\begin{aligned}
\int \frac{e^{2 x}}{1+e^{x}} d x & =\int \frac{e^{x} e^{x}}{1+e^{x}} d x=\int \frac{t-1}{t} d t=\int\left(1-\frac{1}{t}\right) d t \\
& =t-\ln (t)+C=1+e^{x}-\ln \left(1+e^{x}\right)+C
\end{aligned}
$$

This could also have been done with a two-stage substitution: first $s=e^{x}$, so $d s=e^{x} d x$, and then $t=1+s$, so $d t=d s$.

