Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C) Trent University, Fall 2021
 Solution to Quiz \#7

Wednesday, 10 November.

Do the following problem.

$10 \mathrm{~L} / \mathrm{min}$ out

1. A conical tank $6 m$ tall and with a radius of $2 m$ at the blunt end is oriented point down and blunt end up. A pipe feeds water into the tank at the top at an unknown constant rate, while another pipe at the tip of the tank removes water from the tank at a rate of $10 \mathrm{~L} / \mathrm{min}$. Suppose the water level in the tank is rising at a rate of 20 em $20 \mathrm{~cm} / \min$ when the depth of the water in the tank is 2 m . Find the rate at which water is being fed into the tank. [5]
Solution. Note that the water in the tank, at any given instant, occupies a volume shaped like a cone with the same proportions as the tank. Let h be the depth of the water in the tank and r be the radius at the top of the conical shape the water occupies. Then $h / r=6 / 2=3$, so $h=3 r$. The volume of a cone with height h and radius r is $V=\frac{\pi r^{2} h}{3}$, so the volume of the water in the tank is given by $V=\frac{\pi r^{2} h}{3}=\frac{\pi r^{2} 3 r}{3}=\pi r^{3}$.

Let's review the given information with the formulas in the above paragraph in mind. Denote by x the constant rate at which water flows into the tank from the pipe at the top; we'll measure this in $\mathrm{m}^{3} / \mathrm{min}$. The constant rate at wihich the tank is being drained by the bottom pipe is $10 \mathrm{~L} / \mathrm{min}=0.01 \mathrm{~m}^{3} / \mathrm{min}$, so the rate of change of the volume of the water in the tank must be $\frac{d V}{d t}=x-0.01 \mathrm{~m}^{3} / \mathrm{min}$. On the other hand, calculus tells us that the rate of change of the volume of the water in the tank at any given instance should be:

$$
\frac{d V}{d t}=\frac{d}{d t} \pi r^{3}=\pi \frac{d r^{3}}{d r} \cdot \frac{d r}{d t}=3 \pi r^{2} \frac{d r}{d t}
$$

We are also told that at the instant that the depth of the water in the tank is $2 m$, i.e. when $h=2 \mathrm{~m}$, it is rising at a rate of $20 \mathrm{~cm} / \mathrm{min}$ i.e. at a rate of $\frac{d h}{d t}=0.2 \mathrm{~m} / \mathrm{min}$. Since $h=3 r, \frac{d h}{d t}=3 \frac{d r}{d t}$, so it follows that at the instant that $h=2 m$, we have $r=\frac{2}{3} \approx 0.6667$ and $\frac{d r}{d t}=\frac{0.2}{3}=\frac{1}{15} \approx 0.0667 \mathrm{~m} / \mathrm{min}$. This, in turn, means that when $h=2 \mathrm{~m}$, the rate of change of volume is given by:

$$
\left.\frac{d V}{d t}\right|_{h=2}=3 \pi r^{2} \frac{d r}{d t}=3 \pi\left(\frac{2}{3}\right)^{2} \frac{1}{15}=\frac{3 \pi \cdot 4}{9 \cdot 15}=\frac{4 \pi}{45} \approx 0.2793 \mathrm{~m}^{3} / \mathrm{min}
$$

Thus, at the instant that $h=2 m$, we have $x-0.01=\frac{d V}{d t}=\frac{4 \pi}{45} \mathrm{~m}^{3} / \mathrm{min}$, so the rate x at which water flows in through the pipe at the top must be $x=\frac{4 \pi}{45}+0.01 \approx$ $0.2893 \mathrm{~m}^{2} / \mathrm{min}=289.3 \mathrm{~L} / \mathrm{min}$.

$$
[\text { Total }=5]
$$

