Mathematics 1110 H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021

Solutions to Quiz \#3 4 (with corrections)
Wednesday, 13 October.
Do all three of the following problems.

1. Find the domain and all of the vertical and horizontal asymptotes, if any, of

$$
f(x)=\frac{x^{2}+3 x}{x^{2}+x-2}
$$

Solution. The domain of $f(x)$ consists of all values of x for which the function is defined. In this case, the only way the definition of the function can fail is the denominator is 0 , i.e. if $x^{2}+x-2=0$. Since $x^{2}+x-2=(x+2)(x-1)$, it will equal 0 only when $x=-2$ or $x=1$. Thus the domain of $f(x)$ is $\{x \in \mathbb{R} \mid x \neq-2$ and $x \neq 1\}=(-\infty,-2) \cup(-2,1) \cup(1, \infty)$.

Since $f(x)$, like the vast majority of functions we encounter, is continuous wherever it is defined, the only places there might be a vertical asymptote would be at the points where the function is not defined, that is, at $x=-2$ and $x=1$. We take the limit of $f(x)$ from each side at both of these points to check:

$$
\begin{gathered}
\lim _{x \rightarrow-2^{-}} \frac{x^{2}+3 x}{x^{2}+x-2}=\lim _{x \rightarrow-2^{-}} \frac{x(x+3)}{(x-1)(x+2)} \rightarrow-2=0^{+}=-\infty \\
\lim _{x \rightarrow-2^{+}} \frac{x^{2}+3 x}{x^{2}+x-2}=\lim _{x \rightarrow-2^{+}} \frac{x(x+3)}{(x-1)(x+2)} \rightarrow-2=0^{-}=+\infty \\
\lim _{x \rightarrow 1^{-}} \frac{x^{2}+3 x}{x^{2}+x-2}=\lim _{x \rightarrow 1^{-}} \frac{x(x+3)}{(x-1)(x+2)} \rightarrow 40^{-}=-\infty \\
\lim _{x \rightarrow 1^{+}} \frac{x^{2}+3 x}{x^{2}+x-2}=\lim _{x \rightarrow 1^{+}} \frac{x(x+3)}{(x-1)(x+2)} \rightarrow 40^{+}=+\infty
\end{gathered}
$$

Thus $f(x)$ has vertical asymptotes at $x=1$ and $x=-2$, aproaching $-\infty$ from the left and $+\infty$ from the right at each point.

Finally, we check the limits of $f(x)$ as $x \rightarrow-\infty$ and $x \rightarrow \infty$ to see if $f(x)$ has any horizontal asymptotes:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{x^{2}+3 x}{x^{2}+x-2} & =\lim _{x \rightarrow-\infty} \frac{x(x+3)}{(x-1)(x+3)}=\lim _{x \rightarrow-\infty} \frac{x}{x-1} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{1}{1-\frac{1}{x}}=\frac{1}{1-0}=1 \\
\lim _{x \rightarrow \infty} \frac{x^{2}+3 x}{x^{2}+x-2} & =\lim _{x \rightarrow \infty} \frac{x(x+3)}{(x-1)(x+3)}=\lim _{x \rightarrow \infty} \frac{x}{x-1} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{1}{1-\frac{1}{x}}=\frac{1}{1-0}=1
\end{aligned}
$$

Thus $f(x)$ has $y=1$ as a horizontal asymptote in both directions.
2. Find the domain and all of the vertical and horizontal asymptotes, if any, of

$$
g(x)=e^{-x} \sin (x) . \quad[1.5]
$$

Solution. $\sin (x)$ and e^{-x} are both defined for all $x \in \mathbb{R}$, and hence so is their product, $g(x)$. Thus the domain of $g(x)$ is $\mathbb{R}=(-\infty, \infty)$.

Since $g(x)$ is defined and continuous for all x, it has no vertical asymptotes.
Finally, we check the limits of $g(x)$ as $x \rightarrow-\infty$ and $x \rightarrow \infty$ to see if $g(x)$ has any horizontal asymptotes:

First, note that as $x \rightarrow-\infty, \sin (x)$ oscillates between -1 and 1 while $e^{-x} \rightarrow \infty$. It follows that $g(x)=e^{-x} \sin (x)$ has increasingly large oscillations as $x \rightarrow-\infty$, so $\lim _{x \rightarrow-\infty} g(x)$ does not exists. Thus $g(x)$ has no horizontal asymptote as $x \rightarrow-\infty$.

Second, note that as $x \rightarrow \infty, \sin (x)$ oscillates between -1 and 1 while $e^{-x} \rightarrow 0^{+}$. It follows that as $x \rightarrow+\infty,-e^{-x} \leq e^{-x} \sin (x) \leq e^{-x}$, and since $\lim _{x \rightarrow \infty} e^{-x}=0$, it follows by the Squeeze Theorem that $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} e^{-x} \sin (x)=0$. Thus $g(x)$ has $y=0$ as a horizontal asymptote as $x \rightarrow \infty$.
3. Find the domain and all of the vertical and horizontal asymptotes, if any, of

$$
h(x)=e^{-1 / x^{2}} \cdot \quad[1.5]
$$

Solution. Since e^{t} is defined for all $t \in \mathbb{R}$ and $-1 / x^{2}$ is defined for all $x \neq 0$, it follows that $h(x)=e^{-1 / x^{2}}$ is defined for all $x \neq 0$. Thus the domain of $h(x)$ is $\{x \in \mathbb{R} \mid x \neq 0\}=$ $(-\infty, 0) \cup(0, \infty)$.

Since $h(x)$ is defined and continuous for all points $x \neq 0$, the only place it might have a vertical asymptote is at $x=0$. We take the limits from each direction at $x=0$ to check. Note that $-1 / x^{2} \rightarrow-\infty$ both as $x \rightarrow 0^{-}$and as $x \rightarrow 0^{+}$.

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{-}} h(x)=\lim _{x \rightarrow 0^{-}} e^{-1 / x^{2}}=\lim _{t \rightarrow-\infty} e^{t}=0^{+} \\
& \lim _{x \rightarrow 0^{+}} h(x)=\lim _{x \rightarrow 0^{+}} e^{-1 / x^{2}}=\lim _{t \rightarrow-\infty} e^{t}=0^{+}
\end{aligned}
$$

It follows that $h(x)$ does not have a vertical asymptote at $x=0$. (It has a "removable discontinuity": if we defined $h(0)$ to be 0 , the function would be continuous at $x=0$.) Thus $h(x)$ has no vertical asymptotes.

Finally, we check the limits of $h(x)$ as $x \rightarrow-\infty$ and $x \rightarrow \infty$ to see if $h(x)$ has any horizontal asymptotes. Note that $-1 / x^{2} \rightarrow 0$ both as $x \rightarrow-\infty$ and as $x \rightarrow \infty$.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} h(x)=\lim _{x \rightarrow-\infty} e^{-1 / x^{2}}=\lim _{u \rightarrow 0^{-}} e^{u}=e^{0^{-}}=1^{-} \\
& \lim _{x \rightarrow+\infty} h(x)=\lim _{x \rightarrow+\infty} e^{-1 / x^{2}}=\lim _{u \rightarrow 0^{-}} e^{u}=e^{0^{-}}=1^{-}
\end{aligned}
$$

It follows that $h(x)$ has $y=1$ as a horizontal asymptote, which it approaches from below both as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$.

$$
[\text { Total }=5]
$$

