Mathematics 1110 H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021
 Solutions to Quiz \#3
 Wednesday, 6 October.

Do all three of the following problems. Simplify your answers as much as you reasonably can.

1. Find the derivative of $f(x)=\ln (\sec (x)+\tan (x))$. [1.5]

Solution. This is a job for the Chain Rule, plus knowledge of the derivatives of \ln, sec , and tan.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x} \ln (\sec (x)+\tan (x))=\frac{1}{\sec (x)+\tan (x)} \cdot \frac{d}{d x}(\sec (x)+\tan (x)) \\
& =\frac{1}{\sec (x)+\tan (x)} \cdot\left(\frac{d}{d x} \sec (x)+\frac{d}{d x} \tan (x)\right) \\
& =\frac{1}{\sec (x)+\tan (x)} \cdot\left(\sec (x) \tan (x)+\sec ^{2}(x)\right) \\
& =\frac{\sec ^{2}(x)+\sec (x) \tan (x)}{\sec (x)+\tan (x)}=\frac{\sec (x)(\sec (x)+\tan (x))}{\sec (x)+\tan (x)} \\
& =\sec (x)
\end{aligned}
$$

2. Find the derivative of $g(x)=\frac{x^{2}-2 x+1}{x^{2}+2 x-3}$. [1.5]

Solution. We will use the Quotient Rule as our main tool, but not until we have simplified the given function.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}\left(\frac{x^{2}-2 x+1}{x^{2}+2 x-3}\right)=\frac{d}{d x}\left(\frac{(x-1)^{2}}{(x-1)(x+3)}\right)=\frac{d}{d x}\left(\frac{x-1}{x+3}\right) \\
& =\frac{\left[\frac{d}{d x}(x-1)\right](x+3)-(x-1)\left[\frac{d}{d x}(x+3)\right]}{(x+3)^{2}}=\frac{1 \cdot(x+3)-(x-1) \cdot 1}{(x+3)^{2}} \\
& =\frac{4}{(x+3)^{2}}
\end{aligned}
$$

3. Find $\frac{d y}{d x}$ as best you can if $e^{y}=\frac{x+y}{e^{x}}$. [2]

Solution. Solving for $\frac{d y}{d x}$ is a little easier if we first rearrange the equation that relates x and y :

$$
e^{y}=\frac{x+y}{e^{x}} \Longrightarrow x+y=e^{x} e^{y}=e^{x+y}
$$

Note that since $e^{x}>0$ for all x, we are not accidentally multiplying by 0 on both sides of the original equation, which could make the new equation a little less useful.

We now apply the technique of implicit differentiation and take the derivative of both sides of the equation, with a little help from the Chain Rule and knowing that the derivative of the natural exponential function is itself.

$$
\begin{aligned}
x+y=e^{x+y} & \Longrightarrow \frac{d}{d x}(x+y)=\frac{d}{d x} e^{x+y} \Longrightarrow 1+\frac{d y}{d x}=e^{x+y} \cdot \frac{d}{d x}(x+y) \\
& \Longrightarrow 1+\frac{d y}{d x}=e^{x+y} \cdot\left(1+\frac{d y}{d x}\right)
\end{aligned}
$$

At this point there are two ways to go, both of which work.
First, for the last equation to be true, we must have that $e^{x+y}=1$ or that $1+\frac{d y}{d x}=0$. In the former case, we must have $x+y=0$, so $y=-x$, and thus $\frac{d y}{d x}=-1$; in the latter case we must have $\frac{d y}{d x}=-1$ right away.

Second, we can continue from the last equation and solve for $\frac{d y}{d x}$ directly:

$$
\begin{aligned}
1+\frac{d y}{d x}=e^{x+y} \cdot\left(1+\frac{d y}{d x}\right) & \Longrightarrow 1+\frac{d y}{d x}=e^{x+y}+e^{x+y} \cdot \frac{d y}{d x} \\
& \Longrightarrow\left(1-e^{x+y}\right) \cdot \frac{d y}{d x}=e^{x+y}-1 \\
& \Longrightarrow \frac{d y}{d x}=\frac{e^{x+y}-1}{1-e^{x+y}}=-1
\end{aligned}
$$

We'll studiously ignore the fact that this method had us divide by zero. (We know from the first way above that in fact $x+y=0$ and so $e^{x+y}=1$, i.e. $1-e^{x+y}=0$.)

Either way, $\frac{d y}{d x}=-1$.

$$
[\text { Total }=5]
$$

