Mathematics 1110H — Calculus I: Limits, Derivatives, and Integrals (Section C)
TRENT UNIVERSITY, Fall 2021

Solutions to Quiz #3
Wednesday, 6 October.

Do all three of the following problems. Simplify your answers as much as you reason-
ably can.

1. Find the derivative of f(z) = In (sec(z) + tan(z)). [1.5]

SOLUTION. This is a job for the Chain Rule, plus knowledge of the derivatives of In, sec,
and tan.
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SOLUTION. We will use the Quotient Rule as our main tool, but not until we have simplified
the given function.
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SOLUTION. Solving for dr is a little easier if we first rearrange the equation that relates
x
x and y:
eV = :z:ty — r4+y=ec"e ="t
e

Note that since e > 0 for all x, we are not accidentally multiplying by 0 on both sides of
the original equation, which could make the new equation a little less useful.
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We now apply the technique of implicit differentiation and take the derivative of both
sides of the equation, with a little help from the Chain Rule and knowing that the derivative
of the natural exponential function is itself.
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At this point there are two ways to go, both of which work.
d
First, for the last equation to be true, we must have that e*™¥ = 1 or that 1+ d_y =0.
x
d
In the former case, we must have x +y = 0, so y = —z, and thus d—y = —1; in the latter
x

d
case we must have d_y = —1 right away.
x
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Second, we can continue from the last equation and solve for d—y directly:
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We'll studiously ignore the fact that this method had us divide by zero. (We know from
the first way above that in fact x +y =0 and so e*¥ =1, i.e. 1 — €T =0.)

d
Either way, d—y =—1. 1
x

[Total = 5]



