Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021

Solutions to Quiz \#2
Wednesday, 29 September.
Do both of the following problems.

1. Use the practical rules for derivatives to compute the derivative of $f(x)=\frac{1}{\sqrt{x}}$. [1] Solution. We will use the Power Rule for derivatives as our principal tool:

$$
f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)=\frac{d}{d x} x^{-1 / 2}=-\frac{1}{2} \cdot x^{-\frac{1}{2}-1}=-\frac{1}{2} \cdot x^{-3 / 2}=\frac{-1}{2 x^{3} / 2}=\frac{-1}{2 x \sqrt{x}}
$$

2. Use the limit definition of the derivative to find the derivative of $f(x)=\frac{1}{\sqrt{x}}$. [4] Solution. We will plug the given function into the limit definition of the derivative and hope for the best:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}=\lim _{h \rightarrow 0} \frac{\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x+h} \sqrt{x}}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x+h} \sqrt{x}} \\
&=\lim _{h \rightarrow 0} \frac{\sqrt{x}-\sqrt{x+h}}{h \sqrt{x+h} \sqrt{x}} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}=\lim _{h \rightarrow 0} \frac{(\sqrt{(x)})^{2}-(\sqrt{x+h})^{2}}{h \sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})} \\
&=\lim _{h \rightarrow 0} \frac{x-(x+h)}{h \sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}=\lim _{h \rightarrow 0} \frac{-h}{h \sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})} \\
& \lim _{h \rightarrow 0} \frac{-1}{\sqrt{x+h} \sqrt{x}(\sqrt{x}+\sqrt{x+h})}=\frac{-1}{\sqrt{x+0} \sqrt{x}(\sqrt{x}+\sqrt{x+0})} \\
&=\frac{-1}{\sqrt{x} \sqrt{x}(\sqrt{x}+\sqrt{x})}=\frac{-1}{x \cdot 2 \sqrt{x}}=\frac{-1}{2 x \sqrt{x}}
\end{aligned}
$$

Whew! Fortunately, this is the same answer we obtained in 1 above ... :-)

$$
[\text { Total }=5]
$$

