Mathematics 1110 H - Calculus I: Limits, Derivatives, and Integrals (Section C)

 Trent University, Fall 2021Solution to Quiz \#11
Wednesday, 8 December.

1. Consider the region between the curve $y=x+\cos (x)$ and x-axis, where $0 \leq x \leq \pi$. Find the volume of the solid obtained by revolving this region about the x-axis. [5]
 what the region to be revolved about the x-axis looks like:

Solution. Here is a crude sketch of the solid obtained by revolving the given region about the x-axis:

We will use the disk/washer method to find the volume of this solid. Since we are revolving the region about the x-axis, the disk/washer cross-sections are stacked along the x-axis and are perpendicular to it, so we use x as the variable. Recall that $0 \leq x \leq \pi$ for the given region. The cross-section at x is a disk with radius $r=x+\cos (x)-0=x+\cos (x)$, so it has area $A(x)=\pi r^{2}=\pi(x+\cos (x))^{2}$. Thus the volume of the solid is given by:

$$
\begin{aligned}
V & =\int_{0}^{\pi} A(x) d x=\int_{0}^{\pi} \pi(x+\cos (x))^{2} d x=\pi \int_{0}^{\pi}\left(x^{2}+2 x \cos (x)+\cos ^{2}(x)\right) d x \\
& =\pi \int_{0}^{\pi} x^{2} d x+\pi \int_{0}^{\pi} 2 x \cos (x) d x+\pi \int_{0}^{\pi} \cos ^{2}(x) d x
\end{aligned}
$$

For the first of the three integrals, we will use the Power Rule; for the second, we will use integration by parts with $u=2 x$ and $v^{\prime}=\cos (x)$, so $u^{\prime}=2$ and $v=\sin (x)$; and for the third, we will use the trigonometric integral reduction formula $\int \cos ^{n}(x) d x=$ $\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x$. Then the volume of the solid is:

$$
\begin{aligned}
V= & \pi \int_{0}^{\pi} x^{2} d x+\pi \int_{0}^{\pi} 2 x \cos (x) d x+\pi \int_{0}^{\pi} \cos ^{2}(x) d x \\
= & \left.\frac{\pi x^{3}}{3}\right|_{0} ^{\pi}+\pi\left[\left.2 x \sin (x)\right|_{0} ^{\pi}-\int_{0}^{\pi} 2 \sin (x) d x\right]+\pi\left[\left.\frac{1}{2} \cos (x) \sin (x)\right|_{0} ^{\pi}+\frac{1}{2} \int_{0}^{\pi} \cos ^{0}(x) d x\right] \\
= & \frac{\pi \cdot \pi^{3}}{3}-\frac{\pi \cdot 0^{3}}{3}+\pi\left[2 \pi \sin (\pi)-2 \cdot 0 \sin (0)-\left.(-2 \cos (x))\right|_{0} ^{\pi}\right] \\
& +\pi\left[\frac{1}{2} \cos (\pi) \sin (\pi)-\frac{1}{2} \cos (0) \sin (0)+\frac{1}{2} \int_{0}^{\pi} 1 d x\right] \\
= & \frac{\pi^{4}}{3}-0+\pi\left[2 \pi \cdot 0-0+\left.2 \cos (x)\right|_{0} ^{\pi}\right]+\pi\left[\frac{1}{2} \cdot(-1) \cdot 0-\frac{1}{2} \cdot 1 \cdot 0+\left.\frac{x}{2}\right|_{0} ^{\pi}\right] \\
= & \frac{\pi^{4}}{3}+\pi[2 \cos (\pi)-2 \cos (0)]+\pi\left[\frac{\pi}{2}-\frac{0}{2}\right] \\
= & \frac{\pi^{4}}{3}+\pi[2 \cdot(-1)-2 \cdot 1]+\frac{\pi^{2}}{2}=\frac{\pi^{4}}{3}-4 \pi+\frac{\pi^{2}}{2}=\frac{\pi^{4}}{3}+\frac{\pi^{2}}{2}-4 \pi \approx 24.8381
\end{aligned}
$$

Check. We plug the volume integral into SageMath to evaluate it. Typing

$$
N(\text { pi*integral }((x+\cos (x)) \wedge 2, x, 0, p i))
$$

into SageMath yields

24.8381285975196

so we seem to have gotten it right.

