Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021
 Quiz \#10

Wednesday, 1 December.

1. Find the area between the curves $y=x^{2} \cos \left(\frac{\pi x}{4}\right)$ and $y=-x \sin \left(\frac{\pi x^{2}}{4}\right)$, where $0 \leq x \leq 2$. 5]

Solution. (By hand and calculator.) To get some idea of what the region looks like, it is a good idea to plot the two curves on the given interval. Recall that we may use any calculator we like on the quizzes. Stretching the notion of "calculator" just a little, typing

$$
\text { plot }\left(x^{\wedge} 2 * \cos \left(\mathrm{pi}^{*} \mathrm{x} / 4\right), 0,2\right)+\mathrm{plot}\left(-\mathrm{x} * \sin \left(\mathrm{pi} * \mathrm{x}^{\wedge} 2 / 4\right), 0,2\right)
$$

into SageMath gives the following picture:

This suggests the two curves intersect at $(0,0)$ and $(2,0)$, and that between these points $y=x^{2} \cos \left(\frac{\pi x}{4}\right)$ is positive and $y=-x \sin \left(\frac{\pi x^{2}}{4}\right)$ is negative. We can verify the intersections by observing that when $x=0,0^{2} \cos \left(\frac{\pi \cdot 0}{4}\right)=0 \cdot 1=0=-0 \cdot 0=$ $-0 \sin \left(\frac{\pi \cdot 0^{2}}{4}\right)$, and that when $x=2,2^{2} \cos \left(\frac{\pi \cdot 2}{4}\right)=4 \cdot 0=0=-2 \cdot 0=-2 \sin \left(\frac{\pi \cdot 2^{2}}{4}\right)$. As for the rest, $x^{2}>0$ for all $x \neq 0$, and $0<\frac{\pi x}{4}<\frac{\pi}{2}$ when $0<x<2$, so $\cos \left(\frac{\pi x}{4}\right)>0$, and it follows that $y=x^{2} \cos \left(\frac{\pi x}{4}\right)>0$ for $0<x<2$. Similarly, when $0<x<2,-x<0$ and $0<\frac{\pi x^{2}}{4}<\pi$, so $\sin \left(\frac{\pi x^{2}}{4}\right)>0$, from which it follows that $y=-x \sin \left(\frac{\pi x^{2}}{4}\right)<0$ for $0<x<2$.

It follows that the area between the two curves for $0 \leq x \leq 2$ is given by:

$$
\begin{aligned}
A & =\int_{0}^{2}\left(x^{2} \cos \left(\frac{\pi x}{4}\right)-\left(-x \sin \left(\frac{\pi x^{2}}{4}\right)\right)\right) d x \\
& =\int_{0}^{2}\left(x^{2} \cos \left(\frac{\pi x}{4}\right)+x \sin \left(\frac{\pi x^{2}}{4}\right)\right) d x \\
& =\int_{0}^{2} x^{2} \cos \left(\frac{\pi x}{4}\right) d x+\int_{0}^{2} x \sin \left(\frac{\pi x^{2}}{4}\right) d x
\end{aligned}
$$

We will use integration by parts to compute the former integral and substitution to compute the latter integral.

For the former integral, we will use the parts $u=x^{2}$ and $v^{\prime}=\cos \left(\frac{\pi x}{4}\right)$, so $u^{\prime}=2 x$ and $v=\frac{4}{\pi} \sin \left(\frac{\pi x}{4}\right)$. (The problem of integrating $\cos \left(\frac{\pi x}{4}\right)$ is left to the reader; try the substitution $t=\frac{\pi x}{4}$, so $d t=\frac{\pi}{4} d x$ and $d x=\frac{4}{\pi} d t$.)

$$
\begin{aligned}
\int_{0}^{2} x^{2} \cos \left(\frac{\pi x}{4}\right) d x & =\left.x^{2} \cdot \frac{4}{\pi} \sin \left(\frac{\pi x}{4}\right)\right|_{0} ^{2}-\int_{0}^{2} 2 x \cdot \frac{4}{\pi} \sin \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi} \sin \left(\frac{\pi}{2}\right)-0 \sin (0)-\frac{8}{\pi} \int_{0}^{2} x \cdot \sin \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi} \cdot 1-0-\frac{8}{\pi} \int_{0}^{2} x \cdot \sin \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}-\frac{8}{\pi} \int_{0}^{2} x \cdot \sin \left(\frac{\pi x}{4}\right) d x
\end{aligned}
$$

This requires us to use parts again, this time with $u=x$ and $v^{\prime}=\sin \left(\frac{\pi x}{4}\right)$, so $u^{\prime}=1$ and $v=-\frac{4}{\pi} \cos \left(\frac{\pi x}{4}\right)$. (The problem of integrating $\sin \left(\frac{\pi x}{4}\right)$ is also left to the reader.) Thus:

$$
\begin{aligned}
\int_{0}^{2} x^{2} \cos \left(\frac{\pi x}{4}\right) d x & =\frac{16}{\pi}-\frac{8}{\pi} \int_{0}^{2} x \cdot \sin \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}-\frac{8}{\pi}\left[\left.x \cdot\left(-\frac{4}{\pi} \cos \left(\frac{\pi x}{4}\right)\right)\right|_{0} ^{2}-\int_{0}^{2} 1 \cdot\left(-\frac{4 x}{\pi} \cos \left(\frac{\pi x}{4}\right)\right) d x\right] \\
& =\frac{16}{\pi}-\frac{8}{\pi}\left[-\left.\frac{4 x}{\pi} \cos \left(\frac{\pi x}{4}\right)\right|_{0} ^{2}+\frac{4}{\pi} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x\right] \\
& =\frac{16}{\pi}+\left.\frac{32 x}{\pi^{2}} \cos \left(\frac{\pi x}{4}\right)\right|_{0} ^{2}-\frac{32}{\pi^{2}} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}+\frac{32 \cdot 2}{\pi^{2}} \cos \left(\frac{\pi}{2}\right)-\frac{32 \cdot 0}{\pi^{2}} \cos (0)-\frac{32}{\pi^{2}} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}+\frac{64}{\pi^{2}} \cdot 0-0 \cdot(-1)-\frac{32}{\pi^{2}} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}-\frac{32}{\pi^{2}} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x
\end{aligned}
$$

The problem of finding the antiderivative of $\cos \left(\frac{\pi x}{4}\right)$ was considered, and left to the reader, above. Plugging in what it was claimed to be yields:

$$
\begin{aligned}
\int_{0}^{2} x^{2} \cos \left(\frac{\pi x}{4}\right) d x & =\frac{16}{\pi}-\frac{32}{\pi^{2}} \int_{0}^{2} \cos \left(\frac{\pi x}{4}\right) d x \\
& =\frac{16}{\pi}-\left.\frac{32}{\pi^{2}} \cdot \frac{4}{\pi} \sin \left(\frac{\pi x}{4}\right)\right|_{0} ^{2} \\
& =\frac{16}{\pi}-\left.\frac{128}{\pi^{3}} \sin \left(\frac{\pi x}{4}\right)\right|_{0} ^{2} \\
& =\frac{16}{\pi}-\left(\frac{128}{\pi^{3}} \sin \left(\frac{\pi}{2}\right)-\frac{128}{\pi^{3}} \sin (0)\right) \\
& =\frac{16}{\pi}-\left(\frac{128}{\pi^{3}} \cdot 1-\frac{128}{\pi^{3}} \cdot 0\right) \\
& =\frac{16}{\pi}-\frac{128}{\pi^{3}}
\end{aligned}
$$

For the latter integral, we will use the substitution $w=\frac{\pi x^{2}}{4}$, so $d w=\frac{\pi x}{2} d x$ and $x d x=\frac{2}{\pi} d w$, and change the limits as we go along: $\begin{array}{ccc}x & 0 & 2 \\ w & 0 & \pi\end{array}$

$$
\begin{aligned}
\int_{0}^{2} x \sin \left(\frac{\pi x^{2}}{4}\right) d x & =\int_{0}^{\pi} \sin (w) \frac{2}{\pi} d w=\left.\frac{2}{\pi}(-\cos (w))\right|_{0} ^{\pi} \\
& =\frac{2}{\pi}(-\cos (\pi))-\frac{2}{\pi}(-\cos (0))=\frac{2}{\pi}(-(-1))-\frac{2}{\pi}(-1) \\
& =\frac{2}{\pi}+\frac{2}{\pi}=\frac{4}{\pi}
\end{aligned}
$$

Thus the area of the region between the two curves is:

$$
\begin{aligned}
A & =\int_{0}^{2} x^{2} \cos \left(\frac{\pi x}{4}\right) d x+\int_{0}^{2} x \sin \left(\frac{\pi x^{2}}{4}\right) d x \\
& =\left(\frac{16}{\pi}-\frac{128}{\pi^{3}}\right)+\frac{4}{\pi}=\frac{20}{\pi}-\frac{128}{\pi^{3}} \approx 2.2380
\end{aligned}
$$

Check. Using the SageMath "calculator" to evaluate the area integral lets us check our work. Typing

```
integral(x^2*\operatorname{cos(pi*x/4)+x*sin(pi*x^2/4),x,0,2)}
```

into SageMath gives the output

```
4*(5*pi^2 - 32)/pi^3
```

which looks a little different from what was obtained by hand. Being too lazy to actually do algebra to check we use SageMath again to work out the decimal to check. Typing in $N\left(4 *\left(5 * \mathrm{pi}^{\wedge} 2-32\right) / \mathrm{pi}{ }^{\wedge} 3\right)$
yields
2.23800131622628
so we probably got it right.

