Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C) Trent University, Fall 2021

 Solutions to Quiz \#1

 Solutions to Quiz \#1
 Wednesday, 22 September.

Do all three of the following problems.

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(2 x-5)=-1$. You may use either the standard version or the game version of the $\varepsilon-\delta$ definition of limits. [2]
Solution the First. We will use the standard $\varepsilon-\delta$ definition of limits in this solution. We need to show that given any $\varepsilon>0$, we can find a $\delta>0$ such that if $|x-2|<\delta$, then $|(2 x-5)-(-1)|<\varepsilon$. As usual, we try to reverse-engineer the necessary δ by working backward from the desired conclusion that $|(2 x-5)-(-1)|<\varepsilon$. Here goes:

$$
\begin{aligned}
|(2 x-5)-(-1)|<\varepsilon & \Longleftrightarrow|2 x-5+1|<\varepsilon \Longleftrightarrow|2 x-4|<\varepsilon \\
& \Longleftrightarrow|2(x-2)|<\varepsilon \Longleftrightarrow 2|x-2|<\varepsilon \\
& \Longleftrightarrow|x-2|<\frac{\varepsilon}{2}
\end{aligned}
$$

Now let $\delta=\frac{\varepsilon}{2}$. Since every step in the process above is reversible, if we have $|x-2|<$ $\delta=\frac{\varepsilon}{2}$, we must also get that $|(2 x-5)-(-1)|<\varepsilon$, as required by the definition. Thus $\lim _{x \rightarrow 2}(2 x-5)=-1$ according to the standard version of the $\varepsilon-\delta$ definition of limits.

Solution the Second. We will use the alternate version of the $\varepsilon-\delta$ definition of limits in this solution. To verify that $\lim _{x \rightarrow 2}(2 x-5)=-1$ using this version of the definition, we need to find a winning strategy for player B in the corresponding limit game. Recall that there are three moves in the game:

1. Player A chooses an $\varepsilon>0$.
2. Player B then chooses a $\delta>0$.
3. Player A then chooses an x with the restriction that $|x--2|<\varepsilon$.

Player A wins the game if $|(2 x-5)-(-1)| \geq \varepsilon$ and Player B wins the game if $|(2 x-5)-(-1)|<\varepsilon$.
A winning strategy for player B must therefore be a method for picking a $\delta>0$ in response to player A 's choice of $\varepsilon>0$ that ensures that no matter how player A may try to choose an x with $|x-2|<\delta$, player B wins, i.e. $|(2 x-5)-(-1)|<\varepsilon$. As in the solution using the standard definition, we reverse-engineer how to choose the δ by working backwards from what player B needs to to win:

$$
\begin{aligned}
|(2 x-5)-(-1)|<\varepsilon & \Longleftrightarrow|2 x-5+1|<\varepsilon \Longleftrightarrow|2 x-4|<\varepsilon \\
& \Longleftrightarrow|2(x-2)|<\varepsilon \Longleftrightarrow 2|x-2|<\varepsilon \\
& \Longleftrightarrow|x-2|<\frac{\varepsilon}{2}
\end{aligned}
$$

[Yup! It's exactly the same process ... basically, because it's really the same problem.] This suggests that having player B respond to player A 's choice of $\varepsilon>0$ by playing $\delta=\varepsilon / 2$ ought to win the game for player B. Let's see:

If player A plays $\varepsilon>0$ and player B responds by playing $\delta=\varepsilon / 2$, then player A must respond in turn with an x such that $|x-2|<\delta=\frac{\varepsilon}{2}$. As every step of the reverseengineering process is reversible, it must the follow that $|(2 x-5)-(-1)|<\varepsilon$, which means that B wins.

It follows that hplaying $\delta=\varepsilon / 2$ in response to player A 's choice of $\varepsilon>0$ is a winning strategy for player B. since B has winning strategy in the corresponding limit game, it follows by the alternate version of the $\varepsilon-\delta$ definition of limits that $\lim _{x \rightarrow 2}(2 x-5)=-1$.
2. Using the practical rules for computing limits, find $\lim _{x \rightarrow-3} \frac{x^{4}-81}{x^{2}-9}$. [1.5]

Solution. The given limit is apparently indeterminate since $x^{4}-81 \rightarrow 0$ and $x^{2}-9 \rightarrow$ 0 as $x \rightarrow-3$. Fortunately, the denominator is a factor of the numerator, $x^{4}-81=$ $\left(x^{2}-9\right)\left(x^{2}+9\right)$, so we can compute the limit after a little cancellation:

$$
\lim _{x \rightarrow-3} \frac{x^{4}-81}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{\left(x^{2}-9\right)\left(x^{2}+9\right)}{x^{2}-9}=\lim _{x \rightarrow-3}\left(x^{2}+9\right)=(-3)^{2}+9=9+9=18
$$

3. Using the practical rules for computing limits, find $\lim _{x \rightarrow 6}|x-6| \cdot \cos \left(\frac{1}{x-6}\right) \cdot$ [1.5]

Solution. It's easy to see that $|x-6| \rightarrow 0$ as $x \rightarrow 6$. Unfortunately, $\cos \left(\frac{1}{x-6}\right)$ is undefined at $x=6$ and oscillates infinitely often between -1 and 1 as $x \rightarrow 6$. We can take advantage of the fact that the oscillation is bounded in scale to apply the Squeeze Theorem:

Since $-1 \leq \cos (t) \leq 1$ for all real numbers t, it follows that for all $x \neq 6$ we have

$$
-|x-6|=|x-6| \cdot(-1) \leq|x-6| \cdot \cos \left(\frac{1}{x-6}\right) \leq|x-6| \cdot 1=|x-6|
$$

Since $\lim _{x \rightarrow 6}(-|x-6|)=-|6-6|=-|0|=0$ and $\lim _{x \rightarrow 6}|x-6|=|6-6|=|0|=0$, it follows by the Squeeze Theorem that $\lim _{x \rightarrow 6}|x-6| \cdot \cos \left(\frac{1}{x-6}\right)=0$ as well.

