Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals (Section C)
 Trent University, Fall 2021

Assignment \#2

Limits of Perimeters
Due on Friday, 8 October.
Submission: Scanned or photographed handwritten solutions are fine, so long as they are legible. Submission as a single pdf is strongly preferred, but other common formats are probably OK. (If not, we'll get back to you! :-) Please submit via Blackboard's Assignments module. If that fails, please email your solutions to the instructor at: sbilaniuk@trentu.ca

We can inscribe* a regular n-gon in a circle of radius 1 for any $n \geq 3$, as in the sketch below for $n=3$ through $n=6$.

$n=3$

$n=4$

$n=5$

$n=6$

Suppose we let $P(n)$ be the length of the perimeter of a regular n-gon inscribed in a circle of radius 1 .

1. Give an intuitive explanation as to why $\lim _{n \rightarrow \infty} P(n)=2 \pi$. [1]
2. Show that $P(n)=2 n \sin \left(\frac{\pi}{n}\right)$. [5]

Hint: Connect the vertices of the polygon to the centre of the circle to make a bunch of isosceles triangles.
3. Use $\mathbf{1}$ and 2 to show that $\lim _{n \rightarrow \infty} \frac{n}{\pi} \sin \left(\frac{\pi}{n}\right)=1$. [2]
4. Use 3 to give an argument that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$. [2]

[^0]
[^0]: * That is, draw the polygon so that its vertices are all on the circle.

