Mathematics 1110 H - Calculus I: Limits, derivatives, and Integrals Trent University, Fall 2020

Solutions to Quiz \#7
Tuesday, 10 November .
Consider the following setup:
A right triangle has one end of the hypotenuse at the point $(-2,0)$ and the other end on a point of the parabola $y=4-x^{2}$ with $y \geq 0$. The base of the triangle lies along the x-axis and the altitude of the triangle is parallel to the y-axis.

1. Sketch the setup. [1]

Solution. Here's a fairly crude sketch of the setup:

2. What is the maximum area of such a triangle? [4]

Solution. A triangle in this this setup has base $x-(-2)=x+2$ and height $y-0=4-x^{2}$, so it has area $A(x)=\frac{1}{2} \cdot$ base \cdot height $=\frac{1}{2}(x+2)\left(4-x^{2}\right)$. Also, for the end of the hypotenuse on the parabola to have $y=4-x^{2} \geq 0$, we have to have $-2 \leq x \leq 2$. Thus our task is to maximize $A(x)=\frac{1}{2}(x+2)\left(4-x^{2}\right)$ on the interval $[-2,2]$, which we will do by comparing the value of $A(x)$ at the endpoints with its value at any critical points inside the interval.

At the endpoints we have

$$
\begin{aligned}
A(-2) & =\frac{1}{2}(-2+2)\left(4-(-2)^{2}\right)=\frac{1}{2} \cdot 0 \cdot 0=0 \\
\text { and } A(2) & =\frac{1}{2}(2+2)\left(4-2^{2}\right)=\frac{1}{2} \cdot 4 \cdot 0=0
\end{aligned}
$$

To find the critical points we need to find where $A^{\prime}(x)=0$ or is undefined. To compute $A^{\prime}(x)$ it's convenient to first expand our expression for $A(x)$:

$$
A(x)=\frac{1}{2}(x+2)\left(4-x^{2}\right)=\frac{1}{2}\left(4 x-x^{3}+8-2 x^{2}\right)=\frac{1}{2}\left(-x^{3}-2 x^{2}+4 x-8\right)
$$

Taking the derivative of this gives:

$$
A^{\prime}(x)=\frac{d}{d x} \frac{1}{2}\left(-x^{3}-2 x^{2}+4 x-8\right)=\frac{1}{2}\left(-3 x^{2}-4 x+4-0\right)=-\frac{1}{2}\left(3 x^{2}+4 x-4\right)
$$

Note that $A^{\prime}(x)$, like $A(x)$, is defined and continuous for all x, so we only need to look for points where $A^{\prime}(x)=0$.

$$
\begin{aligned}
A^{\prime}(x)=0 \Longleftrightarrow 3 x^{2}+4 x-4=0 \Longleftrightarrow x & =\frac{-4 \pm \sqrt{4^{2}-4 \cdot 3 \cdot(-4)}}{2 \cdot 3}=\frac{-4 \pm \sqrt{16+48}}{6} \\
& =\frac{-4 \pm \sqrt{64}}{6}=\frac{-4 \pm 8}{6}=\frac{-2 \pm 4}{3},
\end{aligned}
$$

Thus $A^{\prime}(x)=0$ exactly when $x=\frac{-2+4}{3}=\frac{2}{3}$ or $x=\frac{-2-4}{3}=-2$, both of which are in the interval $[-2,2]$. We have already worked out that $A(-2)=0$ because $x=-2$ is an endpoint of the interval, so it remains to compute $A\left(\frac{2}{3}\right)$:

$$
A\left(\frac{2}{3}\right)=\frac{1}{2}\left(\frac{2}{3}+2\right)\left(4-\left(\frac{2}{3}\right)^{2}\right)=\frac{1}{2} \cdot \frac{8}{3} \cdot\left(4-\frac{4}{9}\right)=\frac{4}{3} \cdot \frac{32}{9}=\frac{128}{27}
$$

Since $A\left(\frac{2}{3}\right)=\frac{128}{27}>0=A(-2)=A(2)$, it follows that the maximum area of a triangle in the given setup is $\frac{128}{27} \approx 4.74$.

