Mathematics $\mathbf{1 1 1 0 H}$ - Calculus I: Limits, derivatives, and Integrals

Trent University, Fall 2020

Quiz \#3

Tuesday, 6 October.
Do both of the following problems:

1. A curve is defined by the equation $x=\arctan (1-y)+\sqrt{y(2-y)}$. Find the slope of the tangent line to this curve at the point $(1,1)$. [2.5]

Solution. One could try to solve for y in terms of x and then differentiate, but good luck with that ... That leaves implicit differentiation as the only reasonable option to find $\frac{d y}{d x}$.

$$
\begin{aligned}
x & =\arctan (1-y)+\sqrt{y(2-y)} \\
\Rightarrow 1=\frac{d}{d x} x & =\frac{d}{d x}[\arctan (1-y)+\sqrt{y(2-y)}]=\frac{d}{d x} \arctan (1-y)+\frac{d}{d x} \sqrt{y(2-y)} \\
& =\frac{1}{1+(1-y)^{2}} \cdot \frac{d}{d x}(1-y)+\frac{1}{2 \sqrt{y(2-y)}} \cdot \frac{d}{d x}(y(2-y)) \\
& =\frac{1}{1+(1-y)^{2}}\left(0-\frac{d y}{d x}\right)+\frac{1}{2 \sqrt{y(2-y)}}\left[\left(\frac{d y}{d x}\right)(2-y)+y\left(\frac{d}{d x}(2-y)\right)\right] \\
& =\frac{-1}{1+(1-y)^{2}} \cdot \frac{d y}{d x}+\frac{1}{2 \sqrt{y(2-y)}}\left[\left(\frac{d y}{d x}\right)(2-y)+y\left(0-\frac{d y}{d x}\right)\right] \\
& =\frac{-1}{1+(1-y)^{2}} \cdot \frac{d y}{d x}+\frac{1}{2 \sqrt{y(2-y)}} \cdot(2-2 y) \frac{d y}{d x} \\
& =\left[\frac{-1}{1+(1-y)^{2}}+\frac{1-y}{\sqrt{y(2-y)}}\right] \cdot \frac{d y}{d x} \\
\Rightarrow \frac{d y}{d x} & =\frac{-1}{1+(1-y)^{2}}+\frac{1-y}{\sqrt{y(2-y)}}
\end{aligned}
$$

It follows that the slope of the tangent line at the point $(x, y)=(1,1)$ on the curve is:

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(1,1)}=\frac{1}{\frac{-1}{1+(1-1)^{2}}+\frac{1-1}{\sqrt{1(2-1)}}}=\frac{1}{\frac{-1}{1+0^{2}}+\frac{0}{\sqrt{1 \cdot 1}}}=\frac{1}{-1+0}=-1
$$

2. Compute $\lim _{x \rightarrow-\infty} x^{3} e^{x}$. [2.5]

Solution. Note that as $x \rightarrow-\infty, x^{3} \rightarrow-\infty$ too, but $e^{x} \rightarrow 0$. We will rewrite the given limit so that we can apply l'Hôpital's Rule using the fact that $e^{-x}=\frac{1}{e^{x}} \rightarrow \infty$ if $e^{-x} \rightarrow 0$.
(Recall that $e^{t}>0$ for all t.) We will use the fact that $\frac{d}{d t} e^{-t}=e^{-t} \cdot \frac{d}{d t}(-t)=-e^{-t}$ several times over.

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} x^{3} e^{x}=\lim _{x \rightarrow-\infty} \frac{x^{3} \rightarrow-\infty}{e^{-x} \rightarrow+\infty}=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x} x^{3}}{\frac{d}{d x} e^{-x}} \quad \text { by l'Hôpital's Rule } \\
&=\lim _{x \rightarrow-\infty} \frac{3 x^{2} \rightarrow+\infty}{-e^{-x}} \rightarrow-\infty=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x} 3 x^{2}}{\frac{d}{d x}\left(-e^{-x}\right)} \quad \text { by l'Hôpital's Rule } \\
&=\lim _{x \rightarrow-\infty} \frac{6 x}{-\left(-e^{-x}\right)} \rightarrow-\infty=+\infty=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x} 6 x}{\frac{d}{d x} e^{-x}} \quad \text { by l'Hôpital's Rule } \\
&=\lim _{x \rightarrow-\infty} \frac{6}{-e^{-x}} \rightarrow 6 \\
& \rightarrow-\infty
\end{aligned}
$$

