Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals
 Trent University, Fall 2020

Quiz \#2

Tuesday, 29 September.
Do both of the following problems:

1. Use the limit definition of the derivative to work out the derivative of $f(x)=\frac{1}{1+x^{2}}$. [2.5]

Solution. Here we go, in entirely too much detail:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{1+(x+h)^{2}}-\frac{1}{1+x^{2}}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{1+(x+h)^{2}}-\frac{1}{1+x^{2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}}{\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)}-\frac{(x+h)^{2}}{\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{x^{2}-\left(x^{2}+2 h x+h^{2}\right)}{\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)}\right)=\lim _{h \rightarrow 0} \frac{-2 h x-h^{2}}{h\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{h\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)}=\lim _{h \rightarrow 0} \frac{-2 x-h}{\left(1+x^{2}\right)\left(1+(x+h)^{2}\right)} \\
& =\frac{-2 x-0}{\left(1+x^{2}\right)\left(1+(x+0)^{2}\right)}=\frac{-2 x}{\left(1+x^{2}\right)\left(1+x^{2}\right)}=\frac{-2 x}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

2. Compute ${ }^{\dagger}$ the derivative of $g(x)=\left(e^{x}\right)^{\cos ^{2}(x)}\left(e^{\sin ^{2}(x)}\right)^{x}\left(e^{\sec ^{2}(x)}\right)^{-x}\left(e^{x}\right)^{\tan ^{2}(x)}$. For full credit, make your solution as efficient as possible. [2.5]

Solution. It is probably not a good idea to just start taking the derivative of the given expression for $g(x)$. It works, if you are patient and careful enough, but it is much better to simplify that expression first, with the help of the properties of exponents and trigonometric functions:

$$
\begin{aligned}
g(x) & =\left(e^{x}\right)^{\cos ^{2}(x)}\left(e^{\sin ^{2}(x)}\right)^{x}\left(e^{\sec ^{2}(x)}\right)^{-x}\left(e^{x}\right)^{\tan ^{2}(x)} \\
& =e^{x \cos ^{2}(x)} e^{x \sin ^{2}(x)} e^{-x \sec ^{2}(x)} e^{x \tan ^{2}(x)}=e^{x \cos ^{2}(x)+x \sin ^{2}(x)-x \sec ^{2}(x)+x \tan ^{2}(x)} \\
& =e^{x\left(\cos ^{2}(x)+\sin ^{2}(x)-\sec ^{2}(x)+\tan ^{2}(x)\right)}=e^{x(1-1)}=e^{x \cdot 0}=e^{0}=1
\end{aligned}
$$

Recall that $\cos ^{2}(x)+\sin ^{2}(x)=1$ and $\tan ^{2}(x)+1=\sec ^{2}(x)\left(\right.$ so $\left.-\sec ^{2}(x)+\tan ^{2}(x)=-1\right)$. It follows that $g^{\prime}(x)=\frac{d}{d x} 1=0$.

[^0]
[^0]: \dagger Using algebra and the practical rules for computing derivatives. You do not have to verify you are correct using the limit definition of the derivative. (Again, unless you're a mathochist ... :-)

