# Mathematics 1110 H - Calculus I: Limits, derivatives, and Integrals Trent University, Fall 2020 

## Solutions to Quiz \#1

Tuesday, 22 September.

Do both of the following problems:

1. Use the $\varepsilon-\delta$ definition of limits* to verify that $\lim _{x \rightarrow 0} \frac{x}{1+\sin ^{2}(x)}=0$. [2.5]

Solution. I prefer the standard version of the $\varepsilon-\delta$ definition of limits, so that's what I'll use. Thus, to verify that $\lim _{x \rightarrow 0} \frac{x}{1+\sin ^{2}(x)}=0$ we must check that for any $\varepsilon>0$, there is a $\delta>0$, such that for any $x$ satisfying $|x-0|<\delta$ we have $\left|\frac{x}{1+\sin ^{2}(x)}-0\right|<\varepsilon$.

Suppose, then, that we are given an $\varepsilon>0$. As usual, we try to reverse-engineer a corresponding $\delta$ from the desired conclusion:

$$
\begin{aligned}
\left|\frac{x}{1+\sin ^{2}(x)}-0\right|<\varepsilon & \Longleftrightarrow \frac{|x|}{1+\sin ^{2}(x)}<\varepsilon \quad\left(\text { Since } 1+\sin ^{2}(x) \geq 1+0=1>0 .\right) \\
& \Longleftrightarrow|x|<\varepsilon\left(1+\sin ^{2}(x)\right)
\end{aligned}
$$

Obviously, we can't use $\delta=1+\sin ^{2}(x)$, since $\delta$ may not depend on $x$. However, all we need is to find a $\delta>0$ so that if $|x-0|=|x|<\delta$, then $|x|<\varepsilon\left(1+\sin ^{2}(x)\right)$. Since $\sin ^{2}(x)=[\sin (x)]^{2} \geq 0$, we have (as already noted above) that $1+\sin ^{2}(x) \geq 1+0=1$, so $\delta=\varepsilon$ will do:

$$
|x-0|<\delta=\varepsilon \Longleftrightarrow|x|<\varepsilon \leq \varepsilon\left(1+\sin ^{2}(x)\right) \Longrightarrow\left|\frac{x}{1+\sin ^{2}(x)}-0\right|=\frac{|x|}{1+\sin ^{2}(x)}<\varepsilon
$$

It follows that $\lim _{x \rightarrow 0} \frac{x}{1+\sin ^{2}(x)}=0$ by the (standard) $\varepsilon-\delta$ definition of limits.
Note: The argument using the game version of the $\varepsilon-\delta$ definition of limits is essentially at the same at the key steps. Verifying the limit means finding a winning strategy for player B , the one who plays $\delta$ in the second move of the limit game. Finding a winning strategy boils down to responding to player A's $\varepsilon>0$ with a $\delta>0$ such that for any $x$ with $|x-0|<\delta$ we have $\left|\frac{x}{1+\sin ^{2}(x)}-0\right|<\varepsilon$, which leads to exactly the reverse-engineering problem the standard definition does.

* Whichever of the standard or game version happens to be your preference.

2. Compute $\lim _{x \rightarrow 1} \frac{1-\sqrt{x^{2}+2 x+2}}{(x+1)^{2}}$. [2.5]

Solution. Well, all the operations used to construct the function we're taking the limit of are continuous wherever they are defined. As long as we don't end up dividing by 0 or something like that, we can compute the function by evaluating the function at the point we are taking the limit. (This is by the Continuity Rule for evaluating limits; rule 7 in the list given in the Limits III lecture.) Let's try it:

$$
\lim _{x \rightarrow 1} \frac{1-\sqrt{x^{2}+2 x+2}}{(x+1)^{2}}=\frac{1-\sqrt{1^{2}+2 \cdot 1+2}}{(1+1)^{2}}=\frac{1-\sqrt{5}}{2^{2}} \frac{1-\sqrt{5}}{4}
$$

No problems! Not much fuss or muss either ... :-)
Note. If you're feeling cheated by getting a problem that was too easy, you can always $\operatorname{try} \lim _{x \rightarrow-1} \frac{1-\sqrt{x^{2}+2 x+2}}{(x+1)^{2}}$, which is a bit more challenging.

[^0]
[^0]:    $\dagger$ Using algebra and the practical rules for computing limits. You do not have to verify you are correct using the $\varepsilon-\delta$ definition of limits. (Unless you're a mathochist ... :-)

