Mathematics 1110H - Calculus I: Limits, Derivatives, and Integrals
 Trent University, Fall 2020
 Take-Home Final Examination for Section A

Available on Blackboard from 12:00 a.m. on Tuesday, 15 December.
Due on Blackboard by 11:59 p.m. on Thursday, 17 December.
Submission: Scans or photos of handwritten work are entirely acceptable so long as they are legible and in some common format; solutions submitted as a single pdf are strongly preferred. If submission via Blackboard's Assignments module fails repeatedly, then (only as a last resort) email them to the instructor at: sbilaniuk@trentu.ca
Allowed aids: For this exam, you are permitted to use your textbook and all other course material, from this and any other mathematics course(s) you have taken or are taking now, but you may not use any other sources or aids, nor give or receive any help, except to ask the instructor to clarify questions and to use a calculator (any that you like).
Instructions: Do parts \mathbf{U} and \mathbf{V}, and, if you wish, part \mathbf{W}. Please show all your work and justify all your answers. If in doubt about something, ask!

Part U. Do all four (4) of 1-4. [Subtotal =74]

1. Compute $\frac{d y}{d x}$ as best you can in any five (5) of a-f. [20 $=5 \times 4$ each]
a $y=\frac{e^{x}}{x+1}$
b. $y=\int_{0}^{\ln (x)} e^{2 t} d t$
c. $y=e^{-x^{2}}$
d. $y=3^{\sin (x)}$
e. $\ln \left(x^{2}+y^{2}\right)=0$
f. $y=\sqrt{x \tan (x)}$
2. Evaluate any five (5) of the integrals a-f. [$20=5 \times 4$ each]
a. $\int x e^{x-1} d x$
b. $\int_{0}^{\pi / 8} \tan (2 y) d y$
c. $\int e^{z} \ln \left(\left(e^{z}+1\right)^{2}\right) d z$
d. $\int_{0}^{3}(w-1)(w+3) d w$
e. $\int \frac{v+\arctan (v)}{1+v^{2}} d v$
f. $\int_{0}^{2} \frac{4 u}{\sqrt{4+u^{2}}} d u$
3. Do any five (5) of a-g. [$20=5 \times 4$ each]
a. Consider the parametric curve given by $x=\cos (t)$ and $y=\sin (t)$ for $0 \leq t \leq \pi$. What is the slope of the tangent line to the curve when $t=\frac{\pi}{4}$?
b. Compute the area of the finite region between $y=\sqrt{x}$ and $y=\frac{x}{2}$.
c. Compute $\lim _{x \rightarrow \infty} e^{-x} \ln (x)$.
d. Use the limit definition of the derivative to show that $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$ for all $x>0$.
e. Find the absolute minimum value of $f(x)=\arctan \left(x^{2}\right)$ on $(-\infty, \infty)$.
f. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow-2} x^{2}=4$.
g. Find the volume of the solid obtained by revolving the region below $y=3$ and above $y=4-x$, for $1 \leq x \leq 3$ about the x-axis.
4. Find the domain as well as any (and all) intercepts, vertical and horizontal asymptotes, intervals of increase, decrease and concavity, and maximum, minimum, and inflection points of $h(x)=e^{-x^{2} / 2}$, and sketch its graph based on this information. [14]

Part V. Do any two (2) of 5-7. [Subtotal $=26=2 \times 13$ each]
5. Sketch the solid obtained by revolving the region between $y=x^{2}-2$ and $y=x$, where $0 \leq x \leq 2$, about the y-axis, and find its volume.
6. A triangle has one vertex at the point $(0,-4)$ and the other two at the points $(-x, y)$ and (x, y), where $x^{2}+y^{2}=16$. Find the maximum area of such a triangle.
7. A straight and narrow corridor has a ceiling $3 m$ above the floor. The only illumination is from a ceiling panel 15 m from where the corridor ends in a vertical wall. Stick Person, who is 1.5 m tall, walks past the lamp towards the blank wall at $1 \mathrm{~m} / \mathrm{s}$. How quickly is the top of the shadow Stick casts on the wall rising at the instant that Stick is 5 m from the wall?

$$
[\text { Total }=100]
$$

Part W. Bonus problems! If you feel like it, do one or both of these.
$\mathbf{2}^{\mathbf{3}}$. Find a formula in terms of n for the sum $\sum_{i=1}^{n} i(i+4)=1 \cdot 5+2 \cdot 6+\cdots+n(n+4)$. [1]
$\mathbf{3}^{\mathbf{2}}$. Write a haiku touching on calculus or mathematics in general. [1]

What is a haiku?

seventeen in three:
five and seven and five of syllables in lines

We hope that you enjoyed the course. Enjoy the break!

