Mathematics 1110H – Calculus I: Limits, derivatives, and Integrals TRENT UNIVERSITY, Fall 2020

Assignment #6 Solving Equations

Due on Wednesday, 9 December.

Recall that the hyperbolic cosine function is given by $\cosh(x) = \frac{e^x + e^{-x}}{2}$ for all real numbers x. Your task in this assignment will be to find its inverse function $\operatorname{arccosh}(x)$. Since $\cosh(x)$ is an even function, *i.e.* $\cosh(x) = \cosh(-x)$ for all x, we cannot hope to invert it over its entire domain, so we will seek to invert it only for $x \ge 0$, on which $\cosh(x)$ is 1–1.

1. Derive an expression for $\operatorname{arccosh}(x)$ in terms of powers, roots, and the natural logarithm function. When does this expression make sense? [6]

NOTE. If we invert the part of $\cosh(x)$ for $x \ge 0$, the resulting function can only have output ≥ 0 .

Hint: $y = \operatorname{arccosh}(x)$ exactly when $x = \cosh(y) = \frac{e^y + e^{-y}}{2}$. Solve the latter equation for y in terms of x. The quadratic formula is likely to be useful ...

2. Use Maple to find an expression for $\operatorname{arccosh}(x)$. Is this expression equivalent to the one you obtained in answering 1? [4]

Hint: If using Maple's worksheet mode, you'll want to look up the solve command.