Trent University, Fall 2019

MATH 1110H (Section A) Test
 Wednesday, 30 October

Time: 15:00-15:50
Space: TSC 1.22

| Name: \quad Solutions |
| :--- | :---: |
| Student Number: $\quad 0314159$ |

Question Mark

1	-
2	-
3	-

Total _ / 30

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute $\frac{d y}{d x}$ for any three (3) of parts a-f. $[12=3 \times 4$ each $]$
a. $y=\left(x^{2}+1\right)^{41}$
b. $y=\frac{x^{2}-1}{x^{2}+1}$
c. $y=2^{-x}$
d. $y=\frac{\sin (x)}{\tan (x)}$
e. $y=\cos \left(x^{3}\right)$
f. $e^{x+y}=1$

Solutions. a. Power and Chain Rules.

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}+1\right)^{41}=41\left(x^{2}+1\right)^{40} \cdot \frac{d}{d x}\left(x^{2}+1\right)=41\left(x^{2}+1\right)^{40} \cdot 2 x=82 x\left(x^{2}+1\right)^{40}
$$

b. Quotient and Power Rules.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{x^{2}-1}{x^{2}+1}\right)=\frac{\left[\frac{d}{d x}\left(x^{2}-1\right)\right]\left(x^{2}+1\right)-\left(x^{2}-1\right)\left[\frac{d}{d x}\left(x^{2}+1\right)\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{[2 x]\left(x^{2}+1\right)-\left(x^{2}-1\right)[2 x]}{\left(x^{2}+1\right)^{2}}=\frac{2 x^{3}+2 x-2 x^{3}+2 x}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

c. Memorization and Chain Rule. $\frac{d y}{d x}=\frac{d}{d x} 2^{-x}=\ln (2) 2^{-x} \cdot \frac{d}{d x}(-x)=-\ln (2) 2^{-x}$
c. Less memorization, some algebra, and Chain Rule.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 2^{-x}=\frac{d}{d x}\left(e^{\ln (2)}\right)^{-x}=\frac{d}{d x} e^{-\ln (2) x}=e^{-\ln (2) x} \cdot \frac{d}{d x}(-\ln (2) x) \\
& =-\ln (2) e^{-\ln (2) x}=-\ln (2) 2^{-x}
\end{aligned}
$$

d. Simplify first. Since $y=\frac{\sin (x)}{\tan (x)}=\sin (x) \div\left(\frac{\sin (x)}{\cos (x)}\right)=\sin (x) \cdot \frac{\cos (x)}{\sin (x)}=\cos (x)$, we have $\frac{d y}{d x}=\frac{d}{d x} \cos (x)=-\sin (x)$.
d. Quotient Rule, simplify later.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{\sin (x)}{\tan (x)}\right)=\frac{\left[\frac{d}{d x} \sin (x)\right] \tan (x)-\sin (x)\left[\frac{d}{d x} \tan (x)\right]}{\tan ^{2}(x)} \\
& =\frac{\cos (x) \tan (x)-\sin (x) \sec ^{2}(x)}{\tan ^{2}(x)}=\frac{\cos (x) \cdot \frac{\sin (x)}{\cos (x)}-\sin (x) \sec ^{2}(x)}{\tan ^{2}(x)} \\
& =\frac{\sin (x)-\sin (x) \sec ^{2}(x)}{\tan ^{2}(x)}=\frac{\sin (x)\left(1-\sec ^{2}(x)\right)}{\tan ^{2}(x)} \\
& =\frac{-\sin (x)\left(\sec ^{2}(x)-1\right)}{\tan ^{2}(x)}=\frac{-\sin (x) \tan ^{2}(x)}{\tan ^{2}(x)}=-\sin (x) \quad \square
\end{aligned}
$$

e. Chain and Power Rules. $\frac{d y}{d x}=\frac{d}{d x} \cos \left(x^{3}\right)=-\sin \left(x^{3}\right) \cdot \frac{d}{d x} x^{3}=-3 x^{2} \sin \left(x^{3}\right)$
f. Solve for y first. $e^{x+y}=1 \Leftrightarrow x+y=0 \Leftrightarrow y=-x$, so $\frac{d y}{d x}=\frac{d}{d x}(-x)=-1$.
f. Implicit Differentiation.

$$
\begin{aligned}
e^{x+y}=1 & \Longrightarrow \frac{d}{d x} e^{x+y}=\frac{d}{d x} 1 \Longrightarrow e^{x+y} \frac{d}{d x}(x+y)=0 \Longrightarrow e^{x+y}\left(1+\frac{d y}{d x}\right)=0 \\
& \Longrightarrow 1+\frac{d y}{d x}=\frac{0}{e^{x+y}}=0 \Longrightarrow \frac{d y}{d x}=-1
\end{aligned}
$$

Note that $e^{x+y}>0$ no matter what (real number) values x and y may have.
2. Do any two (2) of parts a-d. $[8=2 \times 4$ each]
a. Compute $\lim _{t \rightarrow 0} \frac{\tan (t)}{t}$.
b. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2}(2 x-1)=3$.
c. Use the limit definition of the derivative to verify that $\frac{d}{d x}(x+1)^{2}=2(x+1)$.
d. Find the equation of the tangent line to $y=e^{2 x}$ at $x=0$.

Solutions. a. Divide and conquer:

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\tan (t)}{t} & =\lim _{t \rightarrow 0} \frac{\frac{\sin (t)}{\cos (t)}}{t}=\lim _{t \rightarrow 0} \frac{\sin (t)}{t \cos (t)}=\lim _{t \rightarrow 0} \frac{\sin (t)}{t} \cdot \frac{1}{\cos (t)} \\
& =\left(\lim _{t \rightarrow 0} \frac{\sin (t)}{t}\right) \cdot\left(\lim _{t \rightarrow 0} \frac{1}{\cos (t)}\right)=1 \cdot \frac{1}{\cos (0)}=\frac{1}{1}=1
\end{aligned}
$$

b. We need to show that given any $\varepsilon>0$, one can find a $\delta>0$, such that (for all x) if $|x-2|<\delta$, then $|(2 x-1)-3|<\varepsilon$.

Suppose we are given some $\varepsilon>0$. As usual, we reverse-engineer the corresponding δ from the desired conclusion:

$$
|(2 x-1)-3|<\varepsilon \Longleftrightarrow|2 x-4|<\varepsilon \Longleftrightarrow 2|x-2|<\varepsilon \Longleftrightarrow|x-2|<\frac{\varepsilon}{2}
$$

If we take $\delta=\frac{\varepsilon}{2}$, then whenever $|x-2|<\delta=\frac{\varepsilon}{2}$, we get $|(2 x-1)-3|<\varepsilon$ by following the (fully-reversible!) reasoning above from right to left.

It follows by the $\varepsilon-\delta$ definition of limits that $\lim _{x \rightarrow 2}(2 x-1)=3$.
c. By the limit definition of the derivative:

$$
\begin{aligned}
\frac{d}{d x}(x+1)^{2} & =\lim _{h \rightarrow 0} \frac{((x+h)+1)^{2}-(x+1)^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+x h+x \cdot 1+h x+h^{2}+h \cdot 1+\cdot x+1 \cdot h+1^{2}\right)-\left(x^{2}+2 x+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h x+2 h}{h}=\lim _{h \rightarrow 0}(2 x+2)=2 x+2=2(x+1)
\end{aligned}
$$

d. When $x=0, y=e^{2 \cdot 0}=e^{0}=1$, so the tangent line passes through the point $(0,1)$, which means that it has a y-intercept of $b=1$.

Since $\frac{d y}{d x}=\frac{d}{d x} e^{2 x}=e^{2 x} \cdot \frac{d}{d x}(2 x)=2 e^{2 x}$, the slope of the tangent line at $x=0$ is $m=\left.\frac{d y}{d x}\right|_{x=0}=2 e^{2 \cdot 0}=2 e^{0}=2 \cdot 1=2$.

Thus the equation of the tangent line to $y=e^{2 x}$ at $x=0$ is $y=m x+b=2 x+1$.
3. Find the domain and any and all intercepts, asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of curvature, and inflection points of the function $f(x)=\frac{1}{\sqrt{x^{2}+1}}=\left(x^{2}+1\right)^{-1 / 2}$, and sketch its graph. [10]

Solution. We run through the given checklist:
i. Domain. Since $x^{2}+1>0$ for all $x \in \mathbb{R}, f(x)=\frac{1}{\sqrt{x^{2}+1}}$ is defined for all x too. Note that since $f(x)$ is a composition of continuous functions, it is continuous wherever it is defined, which is to say it is continuous everywhere.
ii. Intercepts. Since $f(0)=\frac{1}{\sqrt{0^{2}+1}}=\frac{1}{\sqrt{1}}=\frac{1}{1}=1$, the y-intercept is 1 . On the other hand, since $f(x)=\frac{1}{\sqrt{x^{2}+1}}>0$ for all x, it does not have any x-intercept.
iii. Asymptotes. Since, as noted above, $f(x)=\frac{1}{\sqrt{x^{2}+1}}$ is defined and continuous for all x, it cannot have any vertical asymptotes. We compute the usual limits to find any horizontal asymptotes; note that $\sqrt{x^{2}+1} \rightarrow+\infty$ as $x \rightarrow-\infty$ and as $x \rightarrow+\infty$:

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} \frac{1}{\sqrt{x^{2}+1}} \rightarrow+\infty=0^{+} \\
& \lim _{x \rightarrow+\infty} \frac{1}{\sqrt{x^{2}+1}} \rightarrow+\infty=0^{+}
\end{aligned}
$$

It follows that $y=f(x)$ has a horizontal asymptote of $y=0$, which it approaches from above, in both directions.
iv. Intervals of increase and decrease, and maximum and minimum points.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x^{2}+1\right)^{-1 / 2}=-\frac{1}{2}\left(x^{2}+1\right)^{-3 / 2} \cdot \frac{d}{d x}\left(x^{2}+1\right)=-\frac{1}{2}\left(x^{2}+1\right)^{-3 / 2} . \\
& =-x\left(x^{2}+1\right)^{-3 / 2}=\frac{-x}{\left(\sqrt{x^{2}+1}\right)^{3}}
\end{aligned}
$$

Since $x^{2}+1>0$, and hence also $\left(x^{2}+1\right)^{-3 / 2}>0$, for all $x, f^{\prime}(x)=0,>0$, or <0, respectively, exactly when $-x=0,>0$, or <0, respectively, i.e. exactly when $x=0$, <0, or >0, respectively. Since $f^{\prime}(x)>0$ when $x<0, f(x)$ is increasing for $x<0$, and $f^{\prime}(x)<0$ when $x>0$, so $f(x)$ is decreasing for $x>0$, and so $f(x)$ has a maximum at $x=0$. We summarize this information in a table:

$$
\begin{array}{cccc}
x & (-\infty, 0) & 0 & (0, \infty) \\
f^{\prime}(x) & + & 0 & - \\
f(x) & \uparrow & \max & \downarrow
\end{array}
$$

v. Intervals of curvature and points of inflection.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{d}{d x}\left(-x\left(x^{2}+1\right)^{-3 / 2}\right)=\left[\frac{d}{d x}(-x)\right] \cdot\left(x^{2}+1\right)^{-3 / 2}+(-x) \cdot\left[\frac{d}{d x}\left(x^{2}+1\right)^{-3 / 2}\right] \\
& =-1 \cdot\left(x^{2}+1\right)^{-3 / 2}+(-x) \cdot\left(-\frac{3}{2}\right)\left(x^{2}+1\right)^{-5 / 2} \cdot\left[\frac{d}{d x}\left(x^{2}+1\right)\right] \\
& =-\left(x^{2}+1\right)^{-3 / 2}+x \cdot \frac{3}{2}\left(x^{2}+1\right)^{-5 / 2} \cdot(2 x) \\
& =-\left(x^{2}+1\right)\left(x^{2}+1\right)^{-5 / 2}+3 x^{2}\left(x^{2}+1\right)^{-5 / 2}=\left(-x^{2}-1+3 x^{2}\right)\left(x^{2}+1\right)^{-5 / 2} \\
& =\left(2 x^{2}-1\right)\left(x^{2}+1\right)^{-5 / 2}=\frac{2 x^{2}-1}{\left(x^{2}+1\right)^{5 / 2}}=\frac{2 x^{2}-1}{\left(\sqrt{x^{2}+1}\right)^{5}}
\end{aligned}
$$

Since $x^{2}+1>0$, and hence also $\left(x^{2}+1\right)^{-5 / 2}>0$, for all $x, f^{\prime}(x)=0,>0$, or <0, respectively, exactly when $2 x^{2}-1=0,>0$, or <0, respectively, i.e. exactly when $x= \pm \frac{1}{\sqrt{2}},|x|>\frac{1}{\sqrt{2}}$, or $|x|<\frac{1}{\sqrt{2}}$, respectively. It follows that $f(x)$ is concave up when $x<-\frac{1}{\sqrt{2}}$ and when $x>\frac{1}{\sqrt{2}}$, and concave down when $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$, so it has inflection points when $x= \pm \frac{1}{\sqrt{2}}$. We summarize this information in a table:

$$
\begin{array}{cccccc}
x & \left(-\infty,-\frac{1}{\sqrt{2}}\right) & -\frac{1}{\sqrt{2}} & \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) & \frac{1}{\sqrt{2}} & \left(\frac{1}{\sqrt{2}}, \infty\right) \\
f^{\prime \prime}(x) & + & 0 & - & 0 & + \\
f(x) & - & \text { infl } & \frown & \text { infl } & \smile
\end{array}
$$

vi. The graph. It's cheating, but it's way more convenient to have a computer do the work. In this case, it's a graphing program called kmplot.

$$
[\text { Total }=30]
$$

