TRENT UNIVERSITY, FALL 2019 **MATH 1110H (Section A) Test** Wednesday, 30 October Time: 15:00–15:50 Space: TSC 1.22

Instructions

- Show all your work. Legibly, please! Simplify where you reasonably can.
- If you have a question, ask it!
- Use the back sides of all the pages for rough work or extra space.
- You may use a calculator and (all sides of) an aid sheet.

1. Compute
$$\frac{dy}{dx}$$
 for any three (3) of parts **a**-**f**. $[12 = 3 \times 4 \text{ each}]$

a.
$$y = (x^2 + 1)^{41}$$
 b. $y = \frac{x^2 - 1}{x^2 + 1}$ **c.** $y = 2^{-x}$

d.
$$y = \frac{\sin(x)}{\tan(x)}$$
 e. $y = \cos(x^3)$ **f.** $e^{x+y} = 1$

- **2.** Do any two (2) of parts **a**-**d**. $[8 = 2 \times 4 \text{ each}]$
 - **a.** Compute $\lim_{t \to 0} \frac{\tan(t)}{t}$.

b. Use the ε - δ definition of limits to verify that $\lim_{x \to 2} (2x - 1) = 3$.

c. Use the limit definition of the derivative to verify that $\frac{d}{dx}(x+1)^2 = 2(x+1)$.

- **d.** Find the equation of the tangent line to $y = e^{2x}$ at x = 0.
- **3.** Find the domain and any and all intercepts, asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of curvature, and inflection points of the function $f(x) = \frac{1}{\sqrt{x^2 + 1}} = (x^2 + 1)^{-1/2}$, and sketch its graph. [10]

|Total = 30|