Mathematics 1110H - Calculus I: Limits, derivatives, and Integrals
 Trent University, Fall 2019
 Solutions to Assignment \#4
 Not the Zero Function

The following function was used as an example by Augustin-Louis Cauchy when investigating the convergence of Taylor series.

$$
f(x)=\left\{\begin{array}{cl}
e^{-1 / x^{2}} & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

1. Verify that $f(x)$ is continuous at $x=0$. [4]

Solution. We need to check that $\lim _{x \rightarrow 0} f(x)=f(0)$. Observe that that as $x \rightarrow 0$, we have $x^{2} \rightarrow 0^{+}$, so $1 / x^{2} \rightarrow+\infty$, and hence $-1 / x^{2} \rightarrow-\infty$. It follows that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{-1 / x^{2}}=\lim _{t \rightarrow-\infty} e^{t}=0=f(0)
$$

as desired.
2. Show that $f^{\prime}(0)$ is defined and equal to 0 . [6]

Solution. Note that $f(x)$ is defined differently at $x=0$ than it is for all other points, which makes it difficult to rely on either definition of $f(x)$ to compute $f^{\prime}(0)$ in the usual way. We will avoid that problem by going back to the limit definition of the derivative, $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$, to compute $f^{\prime}(0)$.

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{-1 /(0+h)^{2}}-0}{h}=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \cdot e^{-(1 / h)^{2}}
$$

How do we proceed from here?
Even though we have $\frac{e^{-1 / h^{2}}}{h} \rightarrow 0$ a ${ }_{0}$ as $h \rightarrow 0$, it is not a good idea to use l'Hôpital's Rule here. Sadly, $\frac{\frac{d}{d h} e^{-1 / h^{2}}}{\frac{d}{d h} h}$ works out to $\frac{2 e^{-1 / h^{2}}}{h^{3}}$, which is worse than what we started with.

A more promising idea is to use the substitution $t=\frac{1}{h}$ to convert $\frac{1}{h} \cdot e^{-(1 / h)^{2}}$ into the easier-to-handle $t e^{-t^{2}}=\frac{t}{e^{t^{2}}}$. This does have one complication, though: as $h \rightarrow 0$, $t=\frac{1}{h} \rightarrow+\infty$ or $-\infty$ depending on whether $h \rightarrow 0^{+}$or 0^{-}, respectively. This means we have to compute two limits and hope they work out the same way. First, we compute the limit as $h \rightarrow 0^{+}$:

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{1}{h} \cdot e^{-(1 / h)^{2}} & =\lim _{t \rightarrow+\infty} \frac{t}{e^{t^{2}} \rightarrow+\infty} \rightarrow+\infty \text { so, by l'Hôpital's Rule, } \\
& =\lim _{t \rightarrow+\infty} \frac{\frac{d}{d t} t}{\frac{d}{d t} e^{t^{2}}}=\lim _{t \rightarrow+\infty} \frac{1}{2 t e^{t^{2}} \rightarrow+\infty} \rightarrow 1
\end{aligned}
$$

Second, we compute the limit as $h \rightarrow 0^{-}$:

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{1}{h} \cdot e^{-(1 / h)^{2}} & =\lim _{t \rightarrow-\infty} \frac{t}{e^{t^{2}} \rightarrow-\infty} \text { + } \quad \text { so, by l6Hôpital's Rule, } \\
& =\lim _{t \rightarrow-\infty} \frac{\frac{d}{d t} t}{\frac{d}{d t} t^{2}}=\lim _{t \rightarrow-\infty} \frac{1}{2 t e^{t^{2}} \rightarrow-\infty} \rightarrow 0
\end{aligned}
$$

Since $\lim _{h \rightarrow 0^{+}} \frac{1}{h} \cdot e^{-(1 / h)^{2}}=0=\lim _{h \rightarrow 0^{-}} \frac{1}{h} \cdot e^{-(1 / h)^{2}}$, we have that $\lim _{h \rightarrow 0} \frac{1}{h} \cdot e^{-(1 / h)^{2}}$ exists and $=0$.

Thus $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{1}{h} \cdot e^{-(1 / h)^{2}}=0$, as desired.
Note. It turns out that the second, third, fourth - every! - derivative of $f(x)$ is defined and equal to 0 at $x=0$, making it indistinguishable from the zero function, $g(x)=0$ for all x, as far as far as calculus can determine it from its behavious at $x=0$.

