Mathematics 1110 H - Calculus I: Limits, derivatives, and Integrals (Section A) Trent University, Fall 2019

Solutions to the Quizzes

Quiz \#1. Wednesday, 18 September. [7 minutes]
Consider the line $y=-x+2$.

1. Find the equation of the line through $(2,2)$ that is perpendicular to the given line. [3]
2. Sketch the graphs of both of these lines. [2]

Solution. 1. A line $y=m x+b$ that is perpendicular to the given line must have a slope that is the negative reciprocal of the slope of the given line, so $m=-\frac{1}{-1}=1$. Thus the perpendicular line has equation $y=x+b$, where it remains to determine b.

Since the point $(2,2)$ is on the perpendicular line, we must have $2=2+b$, so $b=$ $2-2=0$. Thus the line perpendicular to the given line that passes through $(2,2)$ is given by the equation $y=x$.
2. Here is a sketch of these lines:

Quiz \#2. Wednesday, 25 September. [10 minutes]
Compute both of the following limits.

1. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}[2.5] \quad$ 2. $\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}$ [2.5]

SOLUTION. 1. $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+2)}{x-1}=\lim _{x \rightarrow 1}(x+2)=1+2=3$
2. A bit of algebra, the fact that $2 x \rightarrow 0$ as $x \rightarrow 0$, and substituting t for $2 x$ near the end:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x} & =\lim _{x \rightarrow 0} \frac{2}{2} \cdot \frac{\sin (2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 \sin (2 x)}{2 x}=2 \lim _{x \rightarrow 0} \frac{\sin (2 x)}{2 x} \\
& =2 \lim _{2 x \rightarrow 0} \frac{\sin (2 x)}{2 x}=2 \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=2 \cdot 1=2
\end{aligned}
$$

Quiz \#3. Wednesday, 2 October. [10 minutes]
Compute the derivatives of both of the following functions, simplifying where you can.

1. $f(x)=\frac{x^{2}-2}{x-1}$
2. $g(x)=\sqrt{1+\tan ^{2}(x)} \quad[2.5]$

Solution. 1. [Quotient Rule \mathcal{E} algebra]

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{x^{2}-2}{x-1}\right)=\frac{\left[\frac{d}{d x}\left(x^{2}-2\right)\right] \cdot(x-1)-\left(x^{2}-2\right) \cdot\left[\frac{d}{d x}(x-1)\right]}{(x-1)^{2}} \\
& =\frac{[2 x] \cdot(x-1)-\left(x^{2}-2\right) \cdot[1]}{(x-1)^{2}}=\frac{2 x^{2}-2 x-x^{2}+2}{(x-1)^{2}}=\frac{x^{2}-2 x+2}{(x-1)^{2}} \\
& =\frac{(x-1)^{2}+1}{(x-1)^{2}}=1+\frac{1}{(x-1)^{2}}
\end{aligned}
$$

The last line is just showing off . . .-)
2. [Chain Rule \& simplify, or, I forgot about $1+\tan ^{2}(x)=\sec ^{2}(x)$]

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} \sqrt{1+\tan ^{2}(x)}=\frac{d}{d x}\left(1+\tan ^{2}(x)\right)^{1 / 2}=\frac{1}{2}\left(1+\tan ^{2}(x)\right)^{-1 / 2} \cdot \frac{d}{d x}\left(1+\tan ^{2}(x)\right) \\
& =\frac{1}{2}\left(1+\tan ^{2}(x)\right)^{-1 / 2} \cdot 2 \tan (x) \cdot \frac{d}{d x} \tan (x)=\left(1+\tan ^{2}(x)\right)^{-1 / 2} \tan (x) \sec ^{2}(x) \\
& =\frac{\tan (x) \sec ^{2}(x)}{\sqrt{1+\tan ^{2}(x)}}
\end{aligned}
$$

2. [Simplify first, or, I did remember that $1+\tan ^{2}(x)=\sec ^{2}(x)$]

$$
g^{\prime}(x)=\frac{d}{d x} \sqrt{1+\tan ^{2}(x)}=\frac{d}{d x} \sqrt{\sec ^{2}(x)}=\frac{d}{d x} \sec (x)=\sec (x) \tan (x)
$$

This is the same answer as above: just plug in the identity $1+\tan ^{2}(x)=\sec ^{2}(x)$ in the final answer above and simplify away. Of course, it could be rewritten in many different ways, given the multitude of trig idenitities out there.

Quiz \#4. Wednesday, 9 October. [10 minutes]
Compute the derivatives of both of the following functions, simplifying where you can.

1. $f(x)=\log _{2}\left(3^{x}\right)$
2. $g(x)=\ln (\sec (x)+\tan (x))$
[2.5]

Solution. 1. (Simplify first.) $f(x)=\log _{2}\left(3^{x}\right)=x \log _{2}(3)$, so $f^{\prime}(x)=\log _{2}(3)$.

1. (Differentiate first.) Chain Rule all the way:

$$
f^{\prime}(x)=\frac{d}{d x} \log _{2}\left(3^{x}\right)=\frac{1}{\ln (2) \cdot 3^{x}} \cdot\left[\frac{d}{d x} 3^{x}\right]=\frac{1}{\ln (2) \cdot 3^{x}} \cdot \ln (3) \cdot 3^{x}=\frac{\ln (3)}{\ln (2)}=\log _{2}(3)
$$

2. There is nothing for it but to differentiate away using the Chain Rule and hope:

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x} \ln (\sec (x)+\tan (x)) \\
& =\frac{1}{\sec (x)+\tan (x)} \cdot\left[\frac{d}{d x}(\sec (x)+\tan (x))\right] \\
& =\frac{1}{\sec (x)+\tan (x)} \cdot\left[\sec (x) \tan (x)+\sec ^{2}(x)\right] \\
& =\frac{\sec (x)[\tan (x)+\sec (x)]}{\sec (x)+\tan (x)}=\sec (x)
\end{aligned}
$$

Quiz \#5. Wednesday, 16 October. [20 minutes]

1. Find the domain and any and all intercepts, vertical and horizontal asymptotes, intervals of increase and decrease, maximum and minimum points, intervals of concavity, and inflection points of $f(x)=x e^{x}$, and sketch the graph of this function. [5]
Solution. We run throught the given checklist:
i. Domain: $f(x)=x e^{x}$ makes sense for all x, so the domain of $f(x)$ is $\mathbb{R}=(-\infty, \infty)$.
ii. Intercepts. Setting $x=0$ gives $f(0)=0 e^{0}=0$, so the y-intercept is $y=0$. Setting $f(x)=x e^{x}=0$ tells us that $x=0$ because $e^{x}>0$ for all x, so the x-intercept is $x=0$.
iii. Vertical asymptotes. Since $f(x)$ is defined and continuous for all x, being the product of the everywhere defined and continuous functions $g(x)=x$ and $h(x)=e^{x}$, it cannot have any vertical asymptotes.
$i v$. Horizontal asymptotes. We compute the necessary limits. First, $\lim _{x \rightarrow+\infty} x e^{x}=+\infty$, since $x \rightarrow+\infty$ and $e^{x} \rightarrow+\infty$ as $x \rightarrow+\infty$. Second, we need to work a bit harder to compute $\lim _{x \rightarrow-\infty} x e^{x}$, since $x \rightarrow-\infty$ and $e^{x} \rightarrow 0$ as $x \rightarrow-\infty$, and so we need to figure out just what happens in the tug-of-war betwen the two in their product. We rewrite the limit to be able to apply l'Hôpital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} x e^{x} & =\lim _{x \rightarrow-\infty} \frac{x}{e^{-x} \rightarrow-\infty}=\lim _{x \rightarrow-\infty} \frac{\frac{d}{d x} x}{\frac{d}{d x} e^{-x}}=\lim _{x \rightarrow-\infty} \frac{1}{e^{-x} \frac{d}{d x}(-x)} \\
& =\lim _{x \rightarrow-\infty} \frac{1}{-e^{-x}} \rightarrow-(+\infty)=0^{-}
\end{aligned}
$$

We thus have no horizontal assymptote on the positive side, and a horizontal asymptote of $y=0$ on the negative side, which the function approaches from below as $x \rightarrow-\infty$.
v. Intervals of increase and decrease, and maximum and minimum points. First, we compute the derivative:

$$
f^{\prime}(x)=\frac{d}{d x} x e^{x}=\left[\frac{d}{d x} x\right] e^{x}+x\left[\frac{d}{d x} e^{x}\right]=1 e^{x}+x e^{x}=(1+x) e^{x}
$$

Since $e^{x}>0$ for all $x, f^{\prime}(x)$ is $-0,<0$, or >0 exactly when $1+x$ is $-0,<0$, or >0, respectively, i.e. exactly when x is $-1,<-1$, or >-1, respectively. It follows that $f(x)=x e^{x}$ decreases on $(-\infty,-1)$, has a local minimum at $x=-1$, and increases on $(-1,+\infty)$. We summarize these facts in a table:

$$
\begin{array}{cccc}
x & (-\infty, 0) & -1 & (-1,+\infty) \\
f^{\prime}(x) & - & 0 & + \\
f(x) & \downarrow & \text { min } & \uparrow
\end{array}
$$

vi. Intervals of concavity and inflection points. First, we compute the second derivative:

$$
f^{\prime \prime}(x)=\frac{d}{d x}(1+x) e^{x}=\left[\frac{d}{d x}(1+x)\right] e^{x}+(1+x)\left[\frac{d}{d x} e^{x}\right]=1 e^{x}+(1+x) e^{x}=(2+x) e^{x}
$$

Since $e^{x}>0$ for all $x, f^{\prime \prime}(x)$ is $-0,<0$, or >0 exactly when $2+x$ is $-0,<0$, or >0, respectively, i.e. exactly when x is $-2,<-2$, or >-2, respectively. It follows that $f(x)=x e^{x}$ is concave down on $(-\infty,-2)$, has an inflection point at $x=-2$, and is concave up on $(-2,+\infty)$. We summarize these facts in a table:

$$
\begin{array}{cccc}
x & (-\infty,-2) & -2 & (-2,+\infty) \\
f^{\prime \prime}(x) & - & 0 & + \\
f(x) & \frown & \text { infl. } & \smile
\end{array}
$$

vii. The graph. Cheating slightly, we use a graphing program called kmplot to draw the graph for us:

Quiz \#6. Wednesday, 6 November. [10 minutes]

1. A rectangle with sides parallel to the coordinate axes has one corner at the origin and the opposite corner on the line $y=-2 x+8$ in the first quadrant. Find the maximum area of such a rectangle. [5]
Solution. Here's a sketch of the setup:
A rectangle with one corner at the origin and the opposite corner at the point (x, y) in the first quadrant, and with its sides parallel to the coordinate axes, has a width of x and a height of y, and hence area $A=x y$. If the point (x, y) is on the line $y=-2 x+8$, we have area $A=x y=x(-2 x+8)=-2 x^{2}+8 x$ in terms of x. Note for (x, y) to be in the first quadrant and on the line, we must have $0 \leq x \leq 4$.

To find any critical point(s), observe that

$$
\frac{d A}{d x}=\frac{d}{d x}\left(-2 x^{2}+8 x\right)=-4 x+8
$$

which equals zero exactly when $4 x=8$, i.e. when $x=2$.
 This is in the interval $0 \leq x \leq 4$, so we will consider it along with the endpoints: $A(0)=-2 \cdot 0^{2}+8 \cdot 0=0, A(2)=-2 \cdot 2^{2}+8 \cdot 2=-8+16=8$, and $A(4)=-2 \cdot 4^{2}+8 \cdot 4=-32+32=0$. The largest of these is clearly $A(2)=8$, so this is the maximum area of a rectangle with the given constraints.

Quiz \#7. Wednesday, 13 November. [15 minutes]

1. A rectangular block is hauled up a vertical wall by a cable attached to one end of the block so that the end of the cable is always exactly 5 cubits from the wall. The other end of the cable goes over the edge of the wall and is being hauled in at a constant rate of $\frac{12}{13}$ cubits/sec. At what rate is the block rising at the instant that there are exactly 13 cubits of cable between the edge of the wall and the block? [5]

Solution. Let c be the length of the cable from the top edge of the wall to where it is attached to the block, and let x be the distance from the top edge of the wall to the block, as in the diagram above. We are told that $\frac{d c}{d t}=-\frac{12}{13}$ and we wish to to know $\frac{d x}{d t}$ at the instant that $x=12$.

By the Pythagorean Theorem, $c^{2}=5^{2}+x^{2}$, so $x=\sqrt{c^{2}-5^{2}}=\sqrt{c^{2}-25}$. It follows that

$$
\frac{d x}{d t}=\frac{1}{2 \sqrt{c^{2}-25}} \cdot \frac{d}{d t}\left(c^{2}-25\right)=\frac{2 c}{2 \sqrt{c^{2}-25}} \cdot \frac{d c}{d t}=\frac{c}{\sqrt{c^{2}-25}} \cdot \frac{d c}{d t} .
$$

When $x=12, c=\sqrt{12^{2}+5^{2}}=\sqrt{144+25}=\sqrt{169}=13$, so

$$
\left.\frac{d x}{d t}\right|_{x=12}=\frac{13}{\sqrt{13^{2}-25}} \cdot\left(-\frac{12}{13}\right)=\frac{13}{\sqrt{169-25}} \cdot\left(-\frac{12}{13}\right)=\frac{-12}{\sqrt{144}}=-\frac{12}{12}=-1
$$

Note that the negative sign mean that the distance between the block and the edge of the wall is decreasing, i.e. the block is rising at a rate of 1 cubit/sec.

Quiz \#8. Wednesday, 20 November. [15 minutes]
Compute each of the following definite integrals.

1. $\int_{1}^{2}\left(x^{2}+\frac{1}{x^{2}}\right) d x$
2. $\int_{0}^{\sqrt{\pi / 4}} 4 x \sec ^{2}\left(x^{2}\right) d x$

Solutions. 1. Basic properties and the Power Rule for integrals, plus arithmetic:

$$
\begin{aligned}
\int_{1}^{2}\left(x^{2}+\frac{1}{x^{2}}\right) d x & =\int_{1}^{2}\left(x^{2}+x^{-2}\right) d x=\left.\left(\frac{x^{2+1}}{2+1}+\frac{x^{-2+1}}{-2+1}\right)\right|_{1} ^{2}=\left.\left(\frac{x^{3}}{3}-x^{-1}\right)\right|_{1} ^{2} \\
& =\left(\frac{2^{3}}{3}-2^{-1}\right)-\left(\frac{1^{3}}{3}-1^{-1}\right)=\left(\frac{8}{3}-\frac{1}{2}\right)-\left(\frac{1}{3}-1\right) \\
& =\frac{16}{6}-\frac{3}{6}-\frac{2}{6}+\frac{6}{6}=\frac{16-3-2+6}{6}=\frac{17}{6}
\end{aligned}
$$

2. We will use the substitution $u=x^{2}$, so $d u=2 x d x$ and $\begin{array}{llc}x & 0 & \sqrt{\pi / 4} \\ u & 0 & \pi / 4\end{array}$.

$$
\begin{aligned}
\int_{0}^{\sqrt{\pi / 4}} 4 x \sec ^{2}\left(x^{2}\right) d x & =\int_{0}^{\sqrt{\pi / 4}} 2 \sec ^{2}\left(x^{2}\right) \cdot 2 x d x=\int_{0}^{\pi / 4} 2 \sec ^{2}(u) d u \\
& =\left.2 \tan (u)\right|_{0} ^{\pi / 4} \quad \text { because } \frac{d}{d u} \tan (u)=\sec ^{2}(u) \\
& =2 \tan \left(\frac{\pi}{4}\right)-2 \tan (0)=2 \cdot 1-2 \cdot 0=2-0=2
\end{aligned}
$$

